Generation of Realistic Short Chorus Wave Packets

被引:24
作者
Nunn, D. [1 ]
Zhang, X-J [2 ]
Mourenas, D. [3 ,4 ]
Artemyev, A., V [2 ]
机构
[1] Southampton Univ, Sch Elect & Comp Sci, Southampton, Hants, England
[2] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA USA
[3] CEA, DAM, DIF, Arpajon, France
[4] Paris Saclay Univ, CEA, Lab Mat Condit Extremes, Bruyeres Le Chatel, France
基金
美国国家科学基金会;
关键词
chorus waves; radiation belts; wave– particle interaction; WHISTLER-MODE CHORUS; MAGNETIC-FIELD; ELECTRON ACCELERATION; INSTABILITY; SIMULATION;
D O I
10.1029/2020GL092178
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Most lower-band chorus waves observed in the inner magnetosphere propagate under the form of moderately intense short wave packets with fast frequency and phase variations. Therefore, understanding the formation mechanism of such short wave packets is crucial for accurately modeling electron nonlinear acceleration or precipitation into the atmosphere by these waves. We compare chorus wave statistics from the Van Allen Probes with predictions from a simple model of short wave packet generation by wave superposition with resonance nonoverlap, as well as with results from Vlasov Hybrid Simulations of chorus wave generation in an inhomogeneous magnetic field in the presence of one or two simultaneous triggering waves. We show that the observed moderate amplitude short chorus wave packets can be formed by a superposition of two or more waves generated near the magnetic equator with a sufficiently large frequency difference.
引用
收藏
页数:10
相关论文
共 50 条
[31]   Background Parameter Effects on Linear-Nonlinear Chorus Wave Growth in the Planetary Magnetosphere [J].
Zhang, He ;
Li, Qiang ;
Tang, Rongxin ;
Li, Haimeng ;
Wang, Dedong ;
Chen, Zhou ;
Deng, Xiaohua .
ASTROPHYSICAL JOURNAL, 2020, 904 (02)
[32]   Connection Between Chorus Wave Amplitude and Background Magnetic Field Inhomogeneity: A Parametric Study [J].
Wu, Zeyin ;
Huang, Hua ;
Wu, Yifan ;
Tao, Xin ;
Katoh, Yuto ;
Wang, Xiaogang .
GEOPHYSICAL RESEARCH LETTERS, 2023, 50 (24)
[33]   Van Allen Probes Observations of Chorus Wave Vector Orientations: Implications for the Chorus-to-Hiss Mechanism [J].
Hartley, D. P. ;
Kletzing, C. A. ;
Chen, L. ;
Horne, R. B. ;
Santolik, O. .
GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (05) :2337-2346
[34]   Generation of Lower L Shell Dayside Chorus by Energetic Electrons From the Plasma Sheet [J].
He, Yihua ;
Xiao, Fuliang ;
Su, Zhenpeng ;
Zheng, Huinan ;
Yang, Chang ;
Liu, Si ;
Zhou, Qinghua .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2018, 123 (10) :8109-8121
[35]   Global distribution of wave amplitudes and wave normal angles of chorus waves using THEMIS wave observations [J].
Li, W. ;
Bortnik, J. ;
Thorne, R. M. ;
Angelopoulos, V. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2011, 116
[36]   Multi-Parameter Chorus and Plasmaspheric Hiss Wave Models [J].
Aryan, Homayon ;
Bortnik, Jacob ;
Meredith, Nigel P. ;
Horne, Richard B. ;
Sibeck, David G. ;
Balikhin, Michael A. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2021, 126 (01)
[37]   Locations of chorus emissions observed by the Polar Plasma Wave Instrument [J].
Sigsbee, K. ;
Menietti, J. D. ;
Santolik, O. ;
Pickett, J. S. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2010, 115
[38]   The Impenetrable Barrier: Suppression of Chorus Wave Growth by VLF Transmitters [J].
Foster, John C. ;
Erickson, Philip J. ;
Omura, Yoshiharu ;
Baker, Daniel N. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2020, 125 (09)
[39]   Observational evidence of the generation mechanism for rising-tone chorus [J].
Cully, C. M. ;
Angelopoulos, V. ;
Auster, U. ;
Bonnell, J. ;
Le Contel, O. .
GEOPHYSICAL RESEARCH LETTERS, 2011, 38
[40]   Wave Packets of Controlled Velocity Perturbations at Laminar Flow Separation [J].
Dovgal, Alexander ;
Sorokin, Alexander .
SEVENTH IUTAM SYMPOSIUM ON LAMINAR-TURBULENT TRANSITION, 2010, 18 :147-152