Surface Plasmon-Photon Coupling in Lanthanide-Doped Nanoparticles

被引:72
作者
Qin, Xian [3 ]
Neto, Albano N. Carneiro [1 ]
Longo, Ricardo L. [2 ]
Wu, Yiming [3 ]
Malta, Oscar L. [2 ]
Liu, Xiaogang [3 ,4 ]
机构
[1] Univ Aveiro, CICECO Aveiro Inst Mat, Dept Phys, Phantom G, P-3810193 Aveiro, Portugal
[2] Univ Fed Pernambuco, Dept Quim Fundamental, BR-50740560 Recife, PE, Brazil
[3] Natl Univ Singapore, Dept Chem, Singapore 117543, Singapore
[4] Natl Univ Singapore, Ctr Funct Mat, Suzhou Res Inst, Suzhou 215123, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
UP-CONVERSION LUMINESCENCE; RESONANCE ENERGY-TRANSFER; RARE-EARTH ION; NAYF4YB3+; ER3+; NANOPARTICLES; CORE/SHELL NANOMATERIALS; SPONTANEOUS EMISSION; GOLD NANOPARTICLES; ENHANCED EMISSION; AU; PHOTOLUMINESCENCE;
D O I
10.1021/acs.jpclett.0c03613
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lanthanide-doped nanoparticles have great potential for energy conversion applications, as their optical properties can be precisely controlled by varying the doping composition, concentration, and surface structures, as well as through plasmonic coupling. In this Perspective we highlight recent advances in upconversion emission modulation enabled by coupling upconversion nanoparticles with well-defined plasmonic nanostructures. We emphasize fundamental understanding of luminescence enhancement, monochromatic emission amplification, lifetime tuning, and polarization control at nanoscale. The interplay between localized surface plasmons and absorbed photons at the plasmonic metal-lanthanide interface substantially enriches the interpretation of plasmon-coupled nonlinear photophysical processes. These studies will enable novel functional nanomaterials or nanostructures to be designed for a multitude of technological applications, including biomedicine, lasing, optogenetics, super-resolution imaging, photovoltaics, and photocatalysis.
引用
收藏
页码:1520 / 1541
页数:22
相关论文
共 153 条
[1]  
Akselrod GM, 2014, NAT PHOTONICS, V8, P835, DOI [10.1038/NPHOTON.2014.228, 10.1038/nphoton.2014.228]
[2]   A revisitation of the Forster energy transfer near a metallic spherical nanoparticle: (1) Efficiency enhancement or reduction? (2) The control of the Forster radius of the unbounded medium. (3) The impact of the local density of states [J].
Alejandro Gonzaga-Galeana, J. ;
Zurita-Sanchez, Jorge R. .
JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (24)
[3]   Isolating Nanocrystals with an Individual Erbium Emitter: A Route to a Stable Single-Photon Source at 1550 nm Wavelength [J].
Alizadehkhaledi, Amirhossein ;
Frencken, Adriaan L. ;
van Veggel, Frank C. J. M. ;
Gordon, Reuven .
NANO LETTERS, 2020, 20 (02) :1018-1022
[4]   Forster energy transfer in an optical microcavity [J].
Andrew, P ;
Barnes, WL .
SCIENCE, 2000, 290 (5492) :785-788
[5]   Upconversion optical nanomaterials applied for photocatalysis and photovoltaics: Recent advances and perspectives [J].
Atabaev, Timur Sh. ;
Molkenova, Anara .
FRONTIERS OF MATERIALS SCIENCE, 2019, 13 (04) :335-341
[6]   Upconversion and anti-stokes processes with f and d ions in solids [J].
Auzel, F .
CHEMICAL REVIEWS, 2004, 104 (01) :139-173
[7]   UPCONVERSION PROCESSES IN COUPLED ION SYSTEMS [J].
AUZEL, F .
JOURNAL OF LUMINESCENCE, 1990, 45 (1-6) :341-345
[8]   Asymmetric Nanocrescent Antenna on Upconversion Nanocrystal [J].
Bang, Doyeon ;
Jo, Eun-Jung ;
Hong, SoonGweon ;
Byun, Ju-Young ;
Lee, Jae Young ;
Kim, Min-Gon ;
Lee, Luke P. .
NANO LETTERS, 2017, 17 (11) :6583-6590
[9]   Search for the Ideal Plasmonic Nanoshell: The Effects of Surface Scattering and Alternatives to Gold and Silver [J].
Blaber, Martin G. ;
Arnold, Matthew D. ;
Ford, Michael J. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (08) :3041-3045
[10]   Nanophotonic Control of the Forster Resonance Energy Transfer Efficiency [J].
Blum, Christian ;
Zijlstra, Niels ;
Lagendijk, Ad ;
Wubs, Martijn ;
Mosk, Allard P. ;
Subramaniam, Vinod ;
Vos, Willem L. .
PHYSICAL REVIEW LETTERS, 2012, 109 (20)