Functional interpretation of single cell similarity maps

被引:145
作者
De Tomaso, David [1 ]
Jones, Matthew G. [2 ]
Subramaniam, Meena [2 ]
Ashuach, Tal [1 ]
Ye, Chun J. [3 ]
Yosef, Nir [1 ,4 ,5 ,6 ]
机构
[1] Univ Calif Berkeley, Ctr Computat Biol, Berkeley, CA 94720 USA
[2] Univ Calif San Francisco, Biol & Med Informat Grad Program, San Francisco, CA 94143 USA
[3] Univ Calif San Francisco, Inst Human Genet, Dept Bioengn & Therapeut Sci, Dept Epidemiol & Biostat, San Francisco, CA 94143 USA
[4] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[5] MIT & Harvard, Massachusetts Gen Hosp, Ragon Inst, Cambridge, MA 02139 USA
[6] Chan Zuckerberg Biohub, San Francisco, CA 94158 USA
关键词
RNA-SEQ DATA; SIGNATURES DATABASE; EXPRESSION; NORMALIZATION; HETEROGENEITY; GENES;
D O I
10.1038/s41467-019-12235-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present Vision, a tool for annotating the sources of variation in single cell RNA-seq data in an automated and scalable manner. Vision operates directly on the manifold of cell-cell similarity and employs a flexible annotation approach that can operate either with or without preconceived stratification of the cells into groups or along a continuum. We demonstrate the utility of Vision in several case studies and show that it can derive important sources of cellular variation and link them to experimental meta-data even with relatively homogeneous sets of cells. Vision produces an interactive, low latency and feature rich web-based report that can be easily shared among researchers, thus facilitating data dissemination and collaboration.
引用
收藏
页数:11
相关论文
共 53 条
  • [1] Deconvolution of Blood Microarray Data Identifies Cellular Activation Patterns in Systemic Lupus Erythematosus
    Abbas, Alexander R.
    Wolslegel, Kristen
    Seshasayee, Dhaya
    Modrusan, Zora
    Clark, Hilary F.
    [J]. PLOS ONE, 2009, 4 (07):
  • [2] Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment
    Azizi, Elham
    Carr, Ambrose J.
    Plitas, George
    Cornish, Andrew E.
    Konopacki, Catherine
    Prabhakaran, Sandhya
    Nainys, Juozas
    Wu, Kenmin
    Kiseliovas, Vaidotas
    Setty, Manu
    Choi, Kristy
    Fromme, Rachel M.
    Phuong Dao
    McKenney, Peter T.
    Wasti, Ruby C.
    Kadaveru, Krishna
    Mazutis, Linas
    Rudensky, Alexander Y.
    Pe'er, Dana
    [J]. CELL, 2018, 174 (05) : 1293 - +
  • [3] f-scLVM: scalable and versatile factor analysis for single-cell RNA-seq
    Buettner, Florian
    Pratanwanich, Naruemon
    McCarthy, Davis J.
    Marioni, John C.
    Stegle, Oliver
    [J]. GENOME BIOLOGY, 2017, 18
  • [4] A test metric for assessing single-cell RNA-seq batch correction
    Buettner, Maren
    Miao, Zhichao
    Wolf, F. Alexander
    Teichmann, Sarah A.
    Theis, Fabian J.
    [J]. NATURE METHODS, 2019, 16 (01) : 43 - +
  • [5] Chang CI, 2001, CANCER RES, V61, P1100
  • [6] Performance Assessment and Selection of Normalization Procedures for Single-Cell RNA-Seq
    Cole, Michael B.
    Risso, Davide
    Wagner, Allon
    DeTomaso, David
    Ngai, John
    Purdom, Elizabeth
    Dudoit, Sandrine
    Yosef, Nir
    [J]. CELL SYSTEMS, 2019, 8 (04) : 315 - +
  • [7] Drawing graphs nicely using simulated annealing
    Davidson, R
    Harel, D
    [J]. ACM TRANSACTIONS ON GRAPHICS, 1996, 15 (04): : 301 - 331
  • [8] FastProject: a tool for low-dimensional analysis of single-cell RNA-Seq data
    DeTomaso, David
    Yosef, Nir
    [J]. BMC BIOINFORMATICS, 2016, 17
  • [9] Single-cell RNA-seq denoising using a deep count autoencoder
    Eraslan, Goekcen
    Simon, Lukas M.
    Mircea, Maria
    Mueller, Nikola S.
    Theis, Fabian J.
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [10] Fan J, 2016, NAT METHODS, V13, P241, DOI [10.1038/NMETH.3734, 10.1038/nmeth.3734]