Functional interpretation of single cell similarity maps

被引:154
作者
De Tomaso, David [1 ]
Jones, Matthew G. [2 ]
Subramaniam, Meena [2 ]
Ashuach, Tal [1 ]
Ye, Chun J. [3 ]
Yosef, Nir [1 ,4 ,5 ,6 ]
机构
[1] Univ Calif Berkeley, Ctr Computat Biol, Berkeley, CA 94720 USA
[2] Univ Calif San Francisco, Biol & Med Informat Grad Program, San Francisco, CA 94143 USA
[3] Univ Calif San Francisco, Inst Human Genet, Dept Bioengn & Therapeut Sci, Dept Epidemiol & Biostat, San Francisco, CA 94143 USA
[4] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[5] MIT & Harvard, Massachusetts Gen Hosp, Ragon Inst, Cambridge, MA 02139 USA
[6] Chan Zuckerberg Biohub, San Francisco, CA 94158 USA
关键词
RNA-SEQ DATA; SIGNATURES DATABASE; EXPRESSION; NORMALIZATION; HETEROGENEITY; GENES;
D O I
10.1038/s41467-019-12235-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present Vision, a tool for annotating the sources of variation in single cell RNA-seq data in an automated and scalable manner. Vision operates directly on the manifold of cell-cell similarity and employs a flexible annotation approach that can operate either with or without preconceived stratification of the cells into groups or along a continuum. We demonstrate the utility of Vision in several case studies and show that it can derive important sources of cellular variation and link them to experimental meta-data even with relatively homogeneous sets of cells. Vision produces an interactive, low latency and feature rich web-based report that can be easily shared among researchers, thus facilitating data dissemination and collaboration.
引用
收藏
页数:11
相关论文
共 53 条
[1]   Deconvolution of Blood Microarray Data Identifies Cellular Activation Patterns in Systemic Lupus Erythematosus [J].
Abbas, Alexander R. ;
Wolslegel, Kristen ;
Seshasayee, Dhaya ;
Modrusan, Zora ;
Clark, Hilary F. .
PLOS ONE, 2009, 4 (07)
[2]   Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment [J].
Azizi, Elham ;
Carr, Ambrose J. ;
Plitas, George ;
Cornish, Andrew E. ;
Konopacki, Catherine ;
Prabhakaran, Sandhya ;
Nainys, Juozas ;
Wu, Kenmin ;
Kiseliovas, Vaidotas ;
Setty, Manu ;
Choi, Kristy ;
Fromme, Rachel M. ;
Phuong Dao ;
McKenney, Peter T. ;
Wasti, Ruby C. ;
Kadaveru, Krishna ;
Mazutis, Linas ;
Rudensky, Alexander Y. ;
Pe'er, Dana .
CELL, 2018, 174 (05) :1293-+
[3]   f-scLVM: scalable and versatile factor analysis for single-cell RNA-seq [J].
Buettner, Florian ;
Pratanwanich, Naruemon ;
McCarthy, Davis J. ;
Marioni, John C. ;
Stegle, Oliver .
GENOME BIOLOGY, 2017, 18
[4]   A test metric for assessing single-cell RNA-seq batch correction [J].
Buettner, Maren ;
Miao, Zhichao ;
Wolf, F. Alexander ;
Teichmann, Sarah A. ;
Theis, Fabian J. .
NATURE METHODS, 2019, 16 (01) :43-+
[5]  
Chang CI, 2001, CANCER RES, V61, P1100
[6]   Performance Assessment and Selection of Normalization Procedures for Single-Cell RNA-Seq [J].
Cole, Michael B. ;
Risso, Davide ;
Wagner, Allon ;
DeTomaso, David ;
Ngai, John ;
Purdom, Elizabeth ;
Dudoit, Sandrine ;
Yosef, Nir .
CELL SYSTEMS, 2019, 8 (04) :315-+
[7]   Drawing graphs nicely using simulated annealing [J].
Davidson, R ;
Harel, D .
ACM TRANSACTIONS ON GRAPHICS, 1996, 15 (04) :301-331
[8]   FastProject: a tool for low-dimensional analysis of single-cell RNA-Seq data [J].
DeTomaso, David ;
Yosef, Nir .
BMC BIOINFORMATICS, 2016, 17
[9]   Single-cell RNA-seq denoising using a deep count autoencoder [J].
Eraslan, Goekcen ;
Simon, Lukas M. ;
Mircea, Maria ;
Mueller, Nikola S. ;
Theis, Fabian J. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[10]  
Fan J, 2016, NAT METHODS, V13, P241, DOI [10.1038/NMETH.3734, 10.1038/nmeth.3734]