On-Site Detection of SARS-CoV-2 Antigen by Deep Learning-Based Surface-Enhanced Raman Spectroscopy and Its Biochemical Foundations

被引:75
作者
Huang, Jinglin [1 ]
Wen, Jiaxing [1 ,2 ]
Zhou, Minjie [1 ]
Ni, Shuang [1 ]
Le, Wei [1 ]
Chen, Guo [1 ]
Wei, Lai [1 ]
Zeng, Yong [1 ]
Qi, Daojian [1 ]
Pan, Ming [3 ]
Xu, Jianan [3 ]
Wu, Yan [4 ]
Li, Zeyu [1 ]
Feng, Yuliang [3 ]
Zhao, Zongqing [1 ]
He, Zhibing [1 ]
Li, Bo [1 ]
Zhao, Songnan [1 ]
Zhang, Baohan [1 ]
Xue, Peili [4 ]
He, Shusen [3 ]
Fang, Kun [4 ]
Zhao, Yuanyu [4 ]
Du, Kai [1 ]
机构
[1] China Acad Engn Phys, Laser Fus Res Ctr, Mianyang 621900, Sichuan, Peoples R China
[2] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China
[3] Sichuan Prov Ctr Dis Control & Prevent, Chengdu 610041, Peoples R China
[4] Sichuan Sci City Hosp, Mianyang 621000, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
NANOPARTICLES; SPECTRA; PCR;
D O I
10.1021/acs.analchem.1c01061
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A rapid, on-site, and accurate SARS-CoV-2 detection method is crucial for the prevention and control of the COVID-19 epidemic. However, such an ideal screening technology has not yet been developed for the diagnosis of SARS-CoV-2. Her; we have developed a deep learning-based surface-enhanced Raman spectroscopy technique for the sensitive, rapid, and on-site detection of the SARS-CoV-2 antigen in the throat swabs or sputum from 30 confirmed COVID-19 patients. A Raman database based on the spike protein of SARS-CoV-2 was established from experiments and theoretical calculations. The corresponding biochemical foundation for this method is also discussed. The deep learning model could predict the SARS-CoV-2 antigen with an identification accuracy of 87.7%. These results suggested that this method has great potential for the diagnosis, monitoring, and control of SARS-CoV-2 worldwide.
引用
收藏
页码:9174 / 9182
页数:9
相关论文
共 50 条
[41]   Raman and infrared spectroscopy of carbohydrates: A review [J].
Wiercigroch, Ewelina ;
Szafraniec, Ewelina ;
Czamara, Krzysztof ;
Pacia, Marta Z. ;
Majzner, Katarzyna ;
Kochan, Kamila ;
Kaczor, Agnieszka ;
Baranska, Malgorzata ;
Malek, Kamilla .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2017, 185 :317-335
[42]   Real-time PCR for mRNA quantitation [J].
Wong, ML ;
Medrano, JF .
BIOTECHNIQUES, 2005, 39 (01) :75-85
[43]   Developing a Fully Glycosylated Full-Length SARS-CoV-2 Spike Protein Model in a Viral Membrane [J].
Woo, Hyeonuk ;
Park, Sang Jun ;
Choi, Yeol Kyo ;
Park, Taeyong ;
Tanveer, Maham ;
Cao, Yiwei ;
Kern, Nathan R. ;
Lee, Jumin ;
Yeom, Min Sun ;
Croll, Tristan, I ;
Seok, Chaok ;
Im, Wonpil .
JOURNAL OF PHYSICAL CHEMISTRY B, 2020, 124 (33) :7128-7137
[44]  
Wrapp D, 2020, SCIENCE, V367, P1260, DOI [10.1126/science.abb2507, 10.1101/2020.02.11.944462]
[45]  
Wu NC, 2020, PLOS PATHOG, V16, DOI [10.1101/2020.09.21.305441, 10.1371/journal.ppat.1009089]
[46]   Rapid and visual detection of 2019 novel coronavirus (SARS-CoV-2) by a reverse transcription loop-mediated isothermal amplification assay [J].
Yan, C. ;
Cui, J. ;
Huang, L. ;
Du, B. ;
Chen, L. ;
Xue, G. ;
Li, S. ;
Zhang, W. ;
Zhao, L. ;
Sun, Y. ;
Yao, H. ;
Li, N. ;
Zhao, H. ;
Feng, Y. ;
Liu, S. ;
Zhang, Q. ;
Liu, D. ;
Yuan, J. .
CLINICAL MICROBIOLOGY AND INFECTION, 2020, 26 (06) :773-779
[47]  
Ye QZ, 2020, PROTEIN SCI, V29, P1890, DOI [10.1002/pro.3909, 10.1101/2020.05.17.100685]
[48]   A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV [J].
Yuan, Meng ;
Wu, Nicholas C. ;
Zhu, Xueyong ;
Lee, Chang-Chun D. ;
So, Ray T. Y. ;
Lv, Huibin ;
Mok, Chris K. P. ;
Wilson, Ian A. .
SCIENCE, 2020, 368 (6491) :630-+
[49]  
Zhu GY, 2011, SPECTROCHIM ACTA A, V78, P1187, DOI 10.1016/j.saa.2010.12.07
[50]   Surface-Enhanced Raman Spectroscopy for Bioanalysis: Reliability and Challenges [J].
Zong, Cheng ;
Xu, Mengxi ;
Xu, Li-Jia ;
Wei, Ting ;
Ma, Xin ;
Zheng, Xiao-Shan ;
Hu, Ren ;
Ren, Bin .
CHEMICAL REVIEWS, 2018, 118 (10) :4946-4980