Differences and Similarities of Photocatalysis and Electrocatalysis in Two-Dimensional Nanomaterials: Strategies, Traps, Applications and Challenges

被引:127
作者
Qian, Weiqi [1 ,5 ]
Xu, Suwen [1 ,2 ]
Zhang, Xiaoming [2 ]
Li, Chuanbo [2 ]
Yang, Weiyou [3 ]
Bowen, Chris R. [4 ]
Yang, Ya [1 ,5 ,6 ]
机构
[1] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, CAS Ctr Excellence Nanosci, Beijing Key Lab Micronano Energy & Sensor, Beijing 101400, Peoples R China
[2] Minzu Univ China, Sch Sci, Coll Life & Environm Sci, Optoelect Res Ctr, Beijing 100081, Peoples R China
[3] Ningbo Univ Technol, Inst Mat, Ningbo 315016, Peoples R China
[4] Univ Bath, Dept Mech Engn, Bath BA2 7AK, Avon, England
[5] Univ Chinese Acad Sci, Sch Nanosci & Technol, Beijing 100049, Peoples R China
[6] Guangxi Univ, Sch Phys Sci & Technol, Ctr Nanoenergy Res, Nanning 530004, Peoples R China
基金
中国国家自然科学基金;
关键词
2D nanomaterials; Photocatalysis; Electrocatalysis; Electrochemistry; Photoelectrochemistry; GRAPHITIC CARBON NITRIDE; LAYERED DOUBLE HYDROXIDES; TRANSITION-METAL DICHALCOGENIDES; ORGANIC FRAMEWORK NANOSHEETS; VISIBLE-LIGHT PHOTOCATALYSTS; HYDROGEN EVOLUTION REACTION; ION BATTERY ANODES; ACTIVE EDGE SITES; OXYGEN REDUCTION; H-2; EVOLUTION;
D O I
10.1007/s40820-021-00681-9
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Photocatalysis and electrocatalysis have been essential parts of electrochemical processes for over half a century. Recent progress in the controllable synthesis of 2D nanomaterials has exhibited enhanced catalytic performance compared to bulk materials. This has led to significant interest in the exploitation of 2D nanomaterials for catalysis. There have been a variety of excellent reviews on 2D nanomaterials for catalysis, but related issues of differences and similarities between photocatalysis and electrocatalysis in 2D nanomaterials are still vacant. Here, we provide a comprehensive overview on the differences and similarities of photocatalysis and electrocatalysis in the latest 2D nanomaterials. Strategies and traps for performance enhancement of 2D nanocatalysts are highlighted, which point out the differences and similarities of series issues for photocatalysis and electrocatalysis. In addition, 2D nanocatalysts and their catalytic applications are discussed. Finally, opportunities, challenges and development directions for 2D nanocatalysts are described. The intention of this review is to inspire and direct interest in this research realm for the creation of future 2D nanomaterials for photocatalysis and electrocatalysis.
引用
收藏
页数:38
相关论文
共 364 条
[1]   Fundamental Insights into the Degradation and Stabilization of Thin Layer Black Phosphorus [J].
Abellan, Gonzalo ;
Wild, Stefan ;
Lloret, Vicent ;
Scheuschner, Nils ;
Gillen, Roland ;
Mundloch, Udo ;
Maultzsch, Janina ;
Varela, Maria ;
Hauke, Frank ;
Hirsch, Andreas .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (30) :10432-10440
[2]   Linear and nonlinear optical probing of various excitons in 2D inorganic-organic hybrid structures [J].
Adnan, Mohammad ;
Baumberg, Jeremy J. ;
Prakash, G. Vijaya .
SCIENTIFIC REPORTS, 2020, 10 (01)
[3]   In vivo covalent cross-linking of photon-converted rare-earth nanostructures for tumour localization and theranostics [J].
Ai, Xiangzhao ;
Ho, Chris Jun Hui ;
Aw, Junxin ;
Attia, Amalina Binte Ebrahim ;
Mu, Jing ;
Wang, Yu ;
Wang, Xiaoyong ;
Wang, Yong ;
Liu, Xiaogang ;
Chen, Huabing ;
Gao, Mingyuan ;
Chen, Xiaoyuan ;
Yeow, Edwin K. L. ;
Liu, Gang ;
Olivo, Malini ;
Xing, Bengang .
NATURE COMMUNICATIONS, 2016, 7
[4]   Cobalt-Modified Covalent Organic Framework as a Robust Water Oxidation Electrocatalyst [J].
Aiyappa, Harshitha Barike ;
Thote, Jayshri ;
Shinde, Digambar Balaji ;
Banerjee, Rahul ;
Kurungot, Sreekumar .
CHEMISTRY OF MATERIALS, 2016, 28 (12) :4375-4379
[5]   Honeycomb Carbon: A Review of Graphene [J].
Allen, Matthew J. ;
Tung, Vincent C. ;
Kaner, Richard B. .
CHEMICAL REVIEWS, 2010, 110 (01) :132-145
[6]   2H → 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition [J].
Ambrosi, Adriano ;
Sofer, Zdenek ;
Pumera, Martin .
CHEMICAL COMMUNICATIONS, 2015, 51 (40) :8450-8453
[7]   Do the Evaluation Parameters Reflect Intrinsic Activity of Electrocatalysts in Electrochemical Water Splitting? [J].
Anantharaj, Sengeni ;
Kundu, Subrata .
ACS ENERGY LETTERS, 2019, 4 (06) :1260-1264
[8]   Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes) [J].
Anasori, Babak ;
Xie, Yu ;
Beidaghi, Majid ;
Lu, Jun ;
Hosler, Brian C. ;
Hultman, Lars ;
Kent, Paul R. C. ;
Gogotsi, Yury ;
Barsoum, Michel W. .
ACS NANO, 2015, 9 (10) :9507-9516
[9]   Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid [J].
Asadi, Mohammad ;
Kim, Kibum ;
Liu, Cong ;
Addepalli, Aditya Venkata ;
Abbasi, Pedram ;
Yasaei, Poya ;
Phillips, Patrick ;
Behranginia, Amirhossein ;
Cerrato, Jose M. ;
Haasch, Richard ;
Zapol, Peter ;
Kumar, Bijandra ;
Klie, Robert F. ;
Abiade, Jeremiah ;
Curtiss, Larry A. ;
Salehi-Khojin, Amin .
SCIENCE, 2016, 353 (6298) :467-470
[10]   2D MATERIALS The thick and the thin [J].
Ashworth, Claire .
NATURE REVIEWS MATERIALS, 2018, 3 (04)