High-performance organic solar cells utilizing graphene oxide in the active and hole transport layers

被引:46
|
作者
Amollo, Tabitha A. [1 ]
Mola, Genene T. [2 ]
Nyamori, Vincent O. [1 ]
机构
[1] Univ KwaZulu Natal, Sch Chem & Phys, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa
[2] Univ KwaZulu Natal, Sch Chem & Phys, Pietermaritzburg Campus,Private Bag X01, ZA-3209 Scottsville, South Africa
基金
新加坡国家研究基金会;
关键词
Bulk heterojunction; Active layer; Hole transport layer; Graphene oxide; Photoinduced charge carriers; SOLUTION-PROCESSABLE GRAPHENE; OPEN-CIRCUIT VOLTAGE; PHOTOVOLTAIC DEVICES; EXTRACTION LAYERS; WORK-FUNCTION; EFFICIENCY; SPECTROSCOPY; ENHANCEMENT; DERIVATIVES; SURFACTANT;
D O I
10.1016/j.solener.2018.06.068
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
We have successfully synthesized and employed graphene oxide (GO) to boost photons harvesting and charge transport process in thin film organic solar cells (TFOSCs). The graphene oxide was inlayed in both the P3HT:PCBM-based photoactive medium of the device, as well as, a dopant in PEDOT:PSS hole transport buffer layer (HTL). The parameters of the solar cells produced with the inclusion of GO in the HTL and the active layer results in high short-circuit current densities (J(sc)), which translated into high power conversion efficiencies (PCEs). GO in the HTL facilitates charge transport, selective electron blocking and hole injection at the interface for enhanced device performance. On the other hand, the use of GO in the active layer remarkably improves the optical absorption leading to high charge carriers photogeneration requisite to efficient OSCs. Similarly, effective exciton dissociation is energetically favoured in the GO modified active layer devices which corroborated with improved conductivity of the medium that assisted charge carriers transport processes. Enhanced photocurrent has been recorded, as high as 18 mA cm(-2), from the TFOSCs by the inlay of GO in the active layer. Consequently, increased PCE of up to 40% and 120% is achieved by the inclusion of GO in the HTL and photoactive layers, respectively.
引用
收藏
页码:83 / 91
页数:9
相关论文
共 50 条
  • [41] Organic hole transport materials for high performance PbS quantum dot solar cells
    Zhang, Li
    Wang, Shunqiang
    Shi, Yi
    Xu, Jiazi
    Cao, Shuang
    Deng, Zijian
    Chen, Yong
    Zhang, Junjie
    Yang, Xichuan
    Meng, Zhen
    Fan, Quli
    Sun, Bin
    CHEMICAL COMMUNICATIONS, 2024, 60 (40) : 5294 - 5297
  • [42] Solvent control of the morphology of the hole transport layer for high-performance perovskite solar cells
    Xie, Xiaoyin
    Liu, Guanchen
    Chen, Li
    Li, Shuangcui
    Liu, Zhihai
    CHEMICAL PHYSICS LETTERS, 2017, 687 : 258 - 263
  • [43] Tuning Hole Transport Layer Using Urea for High-Performance Perovskite Solar Cells
    Elbohy, Hytham
    Bahrami, Behzad
    Mabrouk, Sally
    Reza, Khan Mamun
    Gurung, Ashim
    Pathak, Rajesh
    Liang, Mao
    Qiao, Qiquan
    Zhu, Kai
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (47)
  • [44] Effects of different formulation PEDOT:PSS hole transport layers on photovoltaic performance of organic solar cells
    Ongul, Fatih
    Yuksel, Sureyya Aydin
    Kazici, Mehmet
    Bozar, Sinem
    Gunbatti, Anil
    Gunes, Serap
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2017, 28 (08) : 947 - 951
  • [45] An Alternative to Chlorobenzene as a Hole Transport Materials Solvent for High-Performance Perovskite Solar Cells
    Lee, Seung Ho
    Lim, Seong Bin
    Kim, Jin Young
    Lee, Seri
    Oh, Se Young
    Kim, Gyu Min
    CRYSTALS, 2023, 13 (12)
  • [46] Hybrid Graphene-Metal Oxide Solution Processed Electron Transport Layers for Large Area High-Performance Organic Photovoltaics
    Beliatis, Michail J.
    Gandhi, Keyur K.
    Rozanski, Lynn J.
    Rhodes, Rhys
    McCafferty, Liam
    Alenezi, Mohammad R.
    Alshammari, Abdullah S.
    Mills, Christopher A.
    Jayawardena, K. D. G. Imalka
    Henley, Simon J.
    Silva, S. Ravi P.
    ADVANCED MATERIALS, 2014, 26 (13) : 2078 - 2083
  • [47] High-performance hole transport layer based on WS2 doped PEDOT:PSS for organic solar cells
    Wang, Yuying
    Li, Na
    Cui, Mengqi
    Li, Yuting
    Tian, Xia
    Xu, Xijie
    Rong, Qikun
    Yuan, Dong
    Zhou, Guofu
    Nian, Li
    ORGANIC ELECTRONICS, 2021, 99
  • [48] Investigation of Various Active Layers for Their Performance on Organic Solar Cells
    Huang, Pao-Hsun
    Wang, Yeong-Her
    Ke, Jhong-Ciao
    Huang, Chien-Jung
    MATERIALS, 2016, 9 (08):
  • [49] Bilayer Electron Transport Layers for High-Performance Rigid and Flexible Perovskite Solar Cells
    Ranka, Anush
    Yang, Inseok
    Layek, Madhuja
    Louzon, Christopher J.
    Doyle, Meaghan C.
    Tresback, Jason S.
    Song, Donghoon
    Datta, Kunal
    Correa-Baena, Juan-Pablo
    Padture, Nitin P.
    SOLAR RRL, 2025,
  • [50] Elimination of Charge Transport Layers in High-Performance Perovskite Solar Cells by Band Bending
    Lv, Feng
    Yao, Yanqing
    Xu, Cunyun
    Liu, Dingyu
    Liao, Liping
    Wang, Gang
    Zhou, Guangdong
    Zhao, Xusheng
    Liu, Debei
    Yang, Xiude
    Song, Qunliang
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (02) : 1294 - 1301