High-performance organic solar cells utilizing graphene oxide in the active and hole transport layers

被引:46
|
作者
Amollo, Tabitha A. [1 ]
Mola, Genene T. [2 ]
Nyamori, Vincent O. [1 ]
机构
[1] Univ KwaZulu Natal, Sch Chem & Phys, Westville Campus,Private Bag X54001, ZA-4000 Durban, South Africa
[2] Univ KwaZulu Natal, Sch Chem & Phys, Pietermaritzburg Campus,Private Bag X01, ZA-3209 Scottsville, South Africa
基金
新加坡国家研究基金会;
关键词
Bulk heterojunction; Active layer; Hole transport layer; Graphene oxide; Photoinduced charge carriers; SOLUTION-PROCESSABLE GRAPHENE; OPEN-CIRCUIT VOLTAGE; PHOTOVOLTAIC DEVICES; EXTRACTION LAYERS; WORK-FUNCTION; EFFICIENCY; SPECTROSCOPY; ENHANCEMENT; DERIVATIVES; SURFACTANT;
D O I
10.1016/j.solener.2018.06.068
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
We have successfully synthesized and employed graphene oxide (GO) to boost photons harvesting and charge transport process in thin film organic solar cells (TFOSCs). The graphene oxide was inlayed in both the P3HT:PCBM-based photoactive medium of the device, as well as, a dopant in PEDOT:PSS hole transport buffer layer (HTL). The parameters of the solar cells produced with the inclusion of GO in the HTL and the active layer results in high short-circuit current densities (J(sc)), which translated into high power conversion efficiencies (PCEs). GO in the HTL facilitates charge transport, selective electron blocking and hole injection at the interface for enhanced device performance. On the other hand, the use of GO in the active layer remarkably improves the optical absorption leading to high charge carriers photogeneration requisite to efficient OSCs. Similarly, effective exciton dissociation is energetically favoured in the GO modified active layer devices which corroborated with improved conductivity of the medium that assisted charge carriers transport processes. Enhanced photocurrent has been recorded, as high as 18 mA cm(-2), from the TFOSCs by the inlay of GO in the active layer. Consequently, increased PCE of up to 40% and 120% is achieved by the inclusion of GO in the HTL and photoactive layers, respectively.
引用
收藏
页码:83 / 91
页数:9
相关论文
共 50 条
  • [1] High-Performance Organic Solar Cells with Spray-Coated Hole-Transport and Active Layers
    Girotto, Claudio
    Moia, Davide
    Rand, Barry P.
    Heremans, Paul
    ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (01) : 64 - 72
  • [2] High-Performance Polymer Solar Cells with Graphene Oxide as a Hole Transport Layer
    Ou, Cheng-Fang
    Chen, Syue-Yan
    Chung Cheng Ling Hsueh Pao/Journal of Chung Cheng Institute of Technology, 2015, 44 (01): : 75 - 85
  • [3] Graphene oxide hole transport layers for large area, high efficiency organic solar cells
    Smith, Chris T. G.
    Rhodes, Rhys W.
    Beliatis, Michail J.
    Jayawardena, K. D. G. Imalka
    Rozanski, Lynn J.
    Mills, Christopher A.
    Silva, S. Ravi P.
    APPLIED PHYSICS LETTERS, 2014, 105 (07)
  • [4] Graphene quantum dots as the hole transport layer material for high-performance organic solar cells
    Li, Miaomiao
    Ni, Wang
    Kan, Bin
    Wan, Xiangjian
    Zhang, Long
    Zhang, Qian
    Long, Guankui
    Zuo, Yi
    Chen, Yongsheng
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (43) : 18973 - 18978
  • [5] Graphene oxide derivatives as hole- and electron-extraction layers for high-performance polymer solar cells
    Liu, Jun
    Durstock, Michael
    Dai, Liming
    ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (04) : 1297 - 1306
  • [6] Hole and Electron Extraction Layers Based on Graphene Oxide Derivatives for High-Performance Bulk Heterojunction Solar Cells
    Liu, Jun
    Xue, Yuhua
    Gao, Yunxiang
    Yu, Dingshan
    Durstock, Michael
    Dai, Liming
    ADVANCED MATERIALS, 2012, 24 (17) : 2228 - 2233
  • [7] Hole extraction layer utilizing well defined graphene oxide with multiple functionalities for high-performance bulk heterojunction solar cells
    Li, Chao
    Yang, Xiaoming
    Zhao, Yue
    Zhang, Pan
    Tu, Yingfeng
    Li, Yaowen
    ORGANIC ELECTRONICS, 2014, 15 (11) : 2868 - 2875
  • [8] Doping organic hole-transport materials for high-performance perovskite solar cells
    Dongmei He
    Shirong Lu
    Juan Hou
    Cong Chen
    Jiangzhao Chen
    Liming Ding
    Journal of Semiconductors, 2023, (02) : 9 - 13
  • [9] Doping organic hole-transport materials for high-performance perovskite solar cells
    Dongmei He
    Shirong Lu
    Juan Hou
    Cong Chen
    Jiangzhao Chen
    Liming Ding
    Journal of Semiconductors, 2023, 44 (02) : 9 - 13
  • [10] Doping organic hole-transport materials for high-performance perovskite solar cells
    He, Dongmei
    Lu, Shirong
    Hou, Juan
    Chen, Cong
    Chen, Jiangzhao
    Ding, Liming
    JOURNAL OF SEMICONDUCTORS, 2023, 44 (02)