Transfer Learning-Based Automatic Hurricane Damage Detection Using Satellite Images

被引:12
|
作者
Kaur, Swapandeep [1 ]
Gupta, Sheifali [1 ]
Singh, Swati [2 ]
Hoang, Vinh Truong [3 ]
Almakdi, Sultan [4 ]
Alelyani, Turki [4 ]
Shaikh, Asadullah [4 ]
机构
[1] Chitkara Univ, Chitkara Univ Inst Engn & Technol, Rajpura 140401, Punjab, India
[2] Himachal Pradesh Univ, Univ Inst Technol, Dept Elect & Commun Engn, Shimla 171005, India
[3] Ho Chi Minh City Open Univ, Fac Comp Sci, Ho Chi Minh City 70000, Vietnam
[4] Najran Univ, Coll Comp Sci & Informat Syst, Najran 61441, Saudi Arabia
关键词
hurricane; damage; undamaged; emergency managers; transfer learning; satellite images;
D O I
10.3390/electronics11091448
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
After the occurrence of a hurricane, assessing damage is extremely important for the emergency managers so that relief aid could be provided to afflicted people. One method of assessing the damage is to determine the damaged and the undamaged buildings post-hurricane. Normally, damage assessment is performed by conducting ground surveys, which are time-consuming and involve immense effort. In this paper, transfer learning techniques have been used for determining damaged and undamaged buildings in post-hurricane satellite images. Four different transfer learning techniques, which include VGG16, MobileNetV2, InceptionV3 and DenseNet121, have been applied to 23,000 Hurricane Harvey satellite images, which occurred in the Texas region. A comparative analysis of these models has been performed on the basis of the number of epochs and the optimizers used. The performance of the VGG16 pre-trained model was better than the other models and achieved an accuracy of 0.75, precision of 0.74, recall of 0.95 and F1-score of 0.83 when the Adam optimizer was used. When the comparison of the best performing models was performed in terms of various optimizers, VGG16 produced the best accuracy of 0.78 for the RMSprop optimizer.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Transfer Learning-Based Model for Diabetic Retinopathy Diagnosis Using Retinal Images
    Jabbar, Muhammad Kashif
    Yan, Jianzhuo
    Xu, Hongxia
    Ur Rehman, Zaka
    Jabbar, Ayesha
    BRAIN SCIENCES, 2022, 12 (05)
  • [32] Hand-Gun Detection in Images with Transfer Learning-Based Convolutional Neural Networks
    Veranyurt, Ozan
    Sakar, C. Okan
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [33] Deep learning-based automatic detection of tuberculosis disease in chest X-ray images
    Showkatian, Eman
    Salehi, Mohammad
    Ghaffari, Hamed
    Reiazi, Reza
    Sadighi, Nahid
    POLISH JOURNAL OF RADIOLOGY, 2022, 87 : E118 - E124
  • [34] Semantic segmentation of optical satellite images for the illegal construction detection using transfer learning
    Mehta, Yashasvi
    Baz, Abdullah
    Patel, Shobhit K.
    RESULTS IN ENGINEERING, 2024, 24
  • [35] Hurricane Damage Detection From Satellite Imagery Using Convolutional Neural Networks
    Kaur, Swapandeep
    Gupta, Sheifali
    Singh, Swati
    Gupta, Isha
    INTERNATIONAL JOURNAL OF INFORMATION SYSTEM MODELING AND DESIGN, 2022, 13 (10)
  • [36] Few-shot meta transfer learning-based damage detection of composite structures
    Chen, Yan
    Xu, Xuebing
    Liu, Cheng
    SMART MATERIALS AND STRUCTURES, 2024, 33 (02)
  • [37] Detection of minute defects using transfer learning-based CNN models
    Nakashima, Kento
    Nagata, Fusaomi
    Ochi, Hiroaki
    Otsuka, Akimasa
    Ikeda, Takeshi
    Watanabe, Keigo
    Habib, Maki K.
    ARTIFICIAL LIFE AND ROBOTICS, 2021, 26 (01) : 35 - 41
  • [38] Detection of minute defects using transfer learning-based CNN models
    Kento Nakashima
    Fusaomi Nagata
    Hiroaki Ochi
    Akimasa Otsuka
    Takeshi Ikeda
    Keigo Watanabe
    Maki K. Habib
    Artificial Life and Robotics, 2021, 26 : 35 - 41
  • [39] Automatic mitosis detection in breast histopathology images using Convolutional Neural Network based deep transfer learning
    Beevi, Sabeena K.
    Nair, Madhu S.
    Bindu, G. R.
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2019, 39 (01) : 214 - 223
  • [40] Automatic Detection of Glaucoma Using Transfer Learning
    Addou, Mohammed
    Mermri, El Bekkaye
    Gabli, Mohammed
    ADVANCES IN SMART MEDICAL, IOT & ARTIFICIAL INTELLIGENCE, VOL 1, ICSMAI 2024, 2024, 11 : 273 - 280