STOCHASTIC GALERKIN MATRICES

被引:51
作者
Ernst, Oliver G. [1 ]
Ullmann, Elisabeth [1 ]
机构
[1] Tech Univ Bergakad Freiberg, Inst Numer Math & Optimierung, D-09596 Freiberg, Germany
关键词
stochastic Galerkin method; stochastic finite elements; orthogonal polynomials; UNCERTAINTY; EQUATIONS; SYSTEMS;
D O I
10.1137/080742282
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the structural, spectral, and sparsity properties of Stochastic Galerkin matrices as they arise in the discretization of linear differential equations with random coefficient functions. These matrices are characterized as the Galerkin representation of polynomial multiplication operators. In particular, it is shown that the global Galerkin matrix associated with complete polynomials cannot be diagonalized in the stochastically linear case.
引用
收藏
页码:1848 / 1872
页数:25
相关论文
共 24 条
[1]  
Adams JC., 1878, Proc. R. Soc. Lond, V27, P63
[2]  
Adler R. J., 1981, GEOMETRY RANDOM FIEL
[3]  
Andrews George E, 1999, Encyclopedia of Mathematics and its Applications, V71, DOI DOI 10.1017/CBO9781107325937
[4]  
Askey R., 1975, Orthogonal polynomials and special functions
[5]   Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation [J].
Babuska, I ;
Tempone, R ;
Zouraris, GE .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (12-16) :1251-1294
[6]   Galerkin finite element approximations of stochastic elliptic partial differential equations [J].
Babuska, I ;
Tempone, R ;
Zouraris, GE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (02) :800-825
[7]  
Christakos G., 2005, RANDOM FIELD MODELS
[8]   H(div) PRECONDITIONING FOR A MIXED FINITE ELEMENT FORMULATION OF THE DIFFUSION PROBLEM WITH RANDOM DATA [J].
Elman, Howard C. ;
Furnival, Darran G. ;
Powell, Catherine E. .
MATHEMATICS OF COMPUTATION, 2010, 79 (270) :733-760
[9]   EFFICIENT SOLVERS FOR A LINEAR STOCHASTIC GALERKIN MIXED FORMULATION OF DIFFUSION PROBLEMS WITH RANDOM DATA [J].
Ernst, O. G. ;
Powell, C. E. ;
Silvester, D. J. ;
Ullmann, E. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (02) :1424-1447
[10]  
GAUTSCHI W, 2004, Orthogonal Polynomials: Computation and Approximation. Numerical Mathematics and Scientific Computation