3D Printed "Earable" Smart Devices for Real-Time Detection of Core Body Temperature

被引:107
作者
Ota, Hiroki [1 ,3 ]
Chao, Minghan [1 ]
Gao, Yuji [1 ,3 ,4 ]
Wu, Eric [1 ]
Tai, Li-Chia [1 ,3 ]
Chen, Kevin [1 ,3 ]
Matsuoka, Yasutomo [1 ]
Iwai, Kosuke [2 ]
Fahad, Hossain M. [1 ,3 ]
Gao, Wei [1 ,3 ]
Nyein, Hnin Yin Yin [1 ,3 ]
Lin, Liwei [2 ]
Javey, Ali [1 ,3 ]
机构
[1] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Dept Mech Engn, Berkeley, CA 94720 USA
[4] Tianjin Univ, Dept Mech Engn, Tianjin 300072, Peoples R China
关键词
3D printing; flexible electronics; wearable device; liquid metal; core body temperature; bone conduction hearing aid; LIQUID-METAL ALLOY; STRAIN SENSORS; CONDUCTIVITY;
D O I
10.1021/acssensors.7b00247
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Real-time detection of basic physiological parameters such as blood pressure and heart rate is an important target in wearable smart devices for healthcare. Among these; the core body temperature is one of the most important basic medical indicators of fever, insomnia, fatigue, metabolic functionality, and depression. However, traditional wearabk temperature sensors are based upon the measurement of skin temperature, which can vary dramatically from the true core body temperature. Here, we demonstrate a three-dimensional (3D) printed wearable "earable" smart device that is designed to be worn on the ear to track core body temperature from the tympanic membrane (i.e., ear drum) based on an infrared sensor. The device is fully integrated with data processing circuits and a wireless module for standlone functionality. Using this smart earable device, we demonstrate that the core body temperature can be accurately monitored regardless of the environment and activity of the user. In addition, a microphone and actuator are also integrated so that the device can also function as a bone conduction hearing aid. Using 3D printing as the fabrication method enables the device to be customized for the wearer for more personalized healthcare. This smart device provides an important advance in realizing personalized health care by enabling real-time monitoring of one of the most important medical parameters, core body temperature, employed in preliminary medical screening tests.
引用
收藏
页码:990 / 997
页数:8
相关论文
共 39 条
[1]   Conformal Printing of Electrically Small Antennas on Three-Dimensional Surfaces [J].
Adams, Jacob J. ;
Duoss, Eric B. ;
Malkowski, Thomas F. ;
Motala, Michael J. ;
Ahn, Bok Yeop ;
Nuzzo, Ralph G. ;
Bernhard, Jennifer T. ;
Lewis, Jennifer A. .
ADVANCED MATERIALS, 2011, 23 (11) :1335-1340
[2]   Flexible technologies and smart clothing for citizen medicine, home healthcare, and disease prevention [J].
Axisa, F ;
Schmitt, PM ;
Gehin, C ;
Delhomme, G ;
McAdams, E ;
Dittmar, A .
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2005, 9 (03) :325-336
[3]   Tattoo-Based Noninvasive Glucose Monitoring: A Proof-of-Concept Study [J].
Bandodkar, Amay J. ;
Jia, Wenzhao ;
Yardimci, Ceren ;
Wang, Xuan ;
Ramirez, Julian ;
Wang, Joseph .
ANALYTICAL CHEMISTRY, 2015, 87 (01) :394-398
[4]   A novel wearable sensor device with conductive fabric and PVDF film for monitoring cardiorespiratory signals [J].
Choi, SJ ;
Jiang, ZW .
SENSORS AND ACTUATORS A-PHYSICAL, 2006, 128 (02) :317-326
[5]   Comparison of Traditional Bone-Conduction Hearing Aids with the Baha® System [J].
Christensen, Lisa ;
Smith-Olinde, Laura ;
Kimberlain, Jillian ;
Richter, Gresham T. ;
Dornhoffer, John L. .
JOURNAL OF THE AMERICAN ACADEMY OF AUDIOLOGY, 2010, 21 (04) :267-273
[6]   Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature [J].
Dickey, Michael D. ;
Chiechi, Ryan C. ;
Larsen, Ryan J. ;
Weiss, Emily A. ;
Weitz, David A. ;
Whitesides, George M. .
ADVANCED FUNCTIONAL MATERIALS, 2008, 18 (07) :1097-1104
[7]   Measuring skin temperature before, during and after exercise: a comparison of thermocouples and infrared thermography [J].
Fernandes, Alex de Andrade ;
dos Santos Amorim, Paulo Roberto ;
Brito, Ciro Jose ;
de Moura, Anselmo Gomes ;
Moreira, Danilo Gomes ;
Amaral Costa, Carlos Magno ;
Sillero-Quintana, Manuel ;
Bouzas Marins, Joao Carlos .
PHYSIOLOGICAL MEASUREMENT, 2014, 35 (02) :189-203
[8]   Wearable Microsensor Array for Multiplexed Heavy Metal Monitoring of Body Fluids [J].
Gao, Wei ;
Nyein, Hnin Y. Y. ;
Shahpar, Ziba ;
Fahad, Hossain M. ;
Chen, Kevin ;
Emaminejad, Sam ;
Gao, Yuji ;
Tai, Li-Chia ;
Ota, Hiroki ;
Wu, Eric ;
Bullock, James ;
Zeng, Yuping ;
Lien, Der-Hsien ;
Javey, Ali .
ACS SENSORS, 2016, 1 (07) :866-874
[9]   Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis [J].
Gao, Wei ;
Emaminejad, Sam ;
Nyein, Hnin Yin Yin ;
Challa, Samyuktha ;
Chen, Kevin ;
Peck, Austin ;
Fahad, Hossain M. ;
Ota, Hiroki ;
Shiraki, Hiroshi ;
Kiriya, Daisuke ;
Lien, Der-Hsien ;
Brooks, George A. ;
Davis, Ronald W. ;
Javey, Ali .
NATURE, 2016, 529 (7587) :509-+
[10]   Metabolic rate and body temperature reduction during hibernation and daily torpor [J].
Geiser, F .
ANNUAL REVIEW OF PHYSIOLOGY, 2004, 66 :239-274