Non-adiabatic molecular dynamics of molecules in the presence of strong light-matter interactions

被引:32
作者
Zhang, Yu [1 ]
Nelson, Tammie [1 ]
Tretiak, Sergei [1 ,2 ]
机构
[1] Los Alamos Natl Lab, Theoret Div, Phys & Chem Mat, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA
关键词
CONICAL INTERSECTIONS; ROOM-TEMPERATURE; ENERGY-TRANSFER; ORGANIC-DYES; QUANTUM; POLARITONS; PHASE; PHOTOISOMERIZATION; PHOTOCHEMISTRY; SIMULATIONS;
D O I
10.1063/1.5116550
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
When the interaction between a molecular system and confined light modes in an optical or plasmonic cavity is strong enough to overcome the dissipative process, hybrid light-matter states (polaritons) become the fundamental excitations in the system. The mixing between the light and matter characters modifies the photophysical and photochemical properties. Notably, it was reported that these polaritons can be employed to control photochemical reactions, charge and energy transfer, and other processes. In addition, according to recent studies, vibrational strong coupling can be employed to resonantly enhance the thermally-activated chemical reactions. In this work, a theoretical model and an efficient numerical method for studying the dynamics of molecules strongly interacting with quantum light are developed based on nonadiabatic excited-state molecular dynamics. The methodology was employed to study the cis-transphotoisomerization of a realistic molecule in a cavity. Numerical simulations demonstrate that the photochemical reactions can be controlled by tuning the properties of the cavity. In the calculated example, the isomerization is suppressed when polaritonic states develop a local minimum on the lower polaritonic state. Moreover, the observed reduction of isomerization is tunable via the photon energy and light-molecule coupling strength. However, the fluctuation in the transition dipole screens the effect of light-matter, which makes it harder to tune the photochemical properties via the coupling strength. These insights suggest quantum control of photochemical reactions is possible by specially designed photonic or plasmonic cavities. Published under license by AIP Publishing.
引用
收藏
页数:15
相关论文
共 103 条
[1]   Dynamics of Strongly Coupled Modes between Surface Plasmon Polaritons and Photoactive Molecules: The Effect of the Stokes Shift [J].
Baieva, Svitlana ;
Hakamaa, Ossi ;
Groenhof, Gerrit ;
Heikkila, Tero T. ;
Toppari, Jussi .
ACS PHOTONICS, 2017, 4 (01) :28-37
[2]   Tunable Third-Harmonic Generation from Polaritons in the Ultrastrong Coupling Regime [J].
Barachati, Fabio ;
Simon, Janos ;
Getmanenko, Yulia A. ;
Barlow, Stephen ;
Marder, Seth R. ;
Kena-Cohen, Stephane .
ACS PHOTONICS, 2018, 5 (01) :119-125
[3]   Novel Nanostructures and Materials for Strong Light Matter Interactions [J].
Baranov, Denis G. ;
Wersall, Martin ;
Cuadra, Jorge ;
Antosiewicz, Tomasz J. ;
Shegai, Timur .
ACS PHOTONICS, 2018, 5 (01) :24-42
[4]   Novel photochemistry of molecular polaritons in optical cavities [J].
Bennett, Kochise ;
Kowalewski, Markus ;
Mukamel, Shaul .
FARADAY DISCUSSIONS, 2016, 194 :259-282
[5]   Solvent effects in time-dependent self-consistent field methods. I. Optical response calculations [J].
Bjorgaard, J. A. ;
Kuzmenko, V. ;
Velizhanin, K. A. ;
Tretiak, S. .
JOURNAL OF CHEMICAL PHYSICS, 2015, 142 (04)
[6]  
Breuer H.-P., 2002, The Theory of Open Quantum Systems
[7]  
Campos-Gonzalez-Angulo J., 2019, ARXIV190210264
[8]   Density-matrix representation of nonadiabatic couplings in time-dependent density functional (TDDFT) theories [J].
Chernyak, V ;
Mukamel, S .
JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (08) :3572-3579
[9]   Single-molecule strong coupling at room temperature in plasmonic nanocavities [J].
Chikkaraddy, Rohit ;
de Nijs, Bart ;
Benz, Felix ;
Barrow, Steven J. ;
Scherman, Oren A. ;
Rosta, Edina ;
Demetriadou, Angela ;
Fox, Peter ;
Hess, Ortwin ;
Baumberg, Jeremy J. .
NATURE, 2016, 535 (7610) :127-130
[10]  
Coles DM, 2014, NAT MATER, V13, P712, DOI [10.1038/NMAT3950, 10.1038/nmat3950]