The adaptive coherence estimator: A uniformly most-powerful-invariant adaptive detection statistic

被引:290
作者
Kraut, S [1 ]
Scharf, LL
Butler, RW
机构
[1] Queens Univ, Dept Math & Stat, Kingston, ON K7L 3N6, Canada
[2] Queens Univ, Dept Elect & Comp Engn, Kingston, ON K7L 3N6, Canada
[3] Colorado State Univ, Dept Elect & Comp Engn, Ft Collins, CO 80523 USA
[4] Colorado State Univ, Dept Stat, Ft Collins, CO 80523 USA
基金
加拿大自然科学与工程研究理事会;
关键词
adaptive detection; adaptive coherence estimator; adaptive rador and sonar; adaptive array processing; constant false alarm rate; invariant detection; sample convariance; uniformly most powerful invariant;
D O I
10.1109/TSP.2004.840823
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We show that the Adaptive Coherence Estimator (ACE) is a uniformly most powerful (UMP) invariant detection statistic. This statistic is relevant to a scenario appearing in adaptive array processing, in which there are auxiliary, signal-free, training-data vectors that can be used to form a sample covariance estimate for clutter and interference suppression. The result is based on earlier work by Bose and Steinhardt, who found a two-dimensional (2-D) maximal invariant when test and training data share the same noise covariance. Their 2-D maximal invariant is given by Kelly's Generalized Likelihood Ratio Test (GLRT) statistic and the Adaptive Matched Filter (AMF). We extend the, maximal-invariant framework to the problem for which the ACE is a GLRT: The test data shares the same covariance structure as the training data, but the relative power level is not constrained. In this case, the maximal invariant statistic collapses to a one-dimensional (1-D) scalar, which is also the ACE statistic. Furthermore, we show that the probability density function for the ACE possesses the property of "total positivity," which establishes that it has. monotone likelihood ratio. Thus, a threshold test on the ACE is UMP-invariant. This means that it has a claim to optimality, having the largest detection probability out of the class of detectors that are also invariant to affine transformations on the data matrix that leave the hypotheses unchanged. This requires an additional invariance not imposed by Bose and Steinhardt: invariance to relative scaling of test and training data. The ACE is invariant and has a Constant False Alarm Rate (CFAR) with respect to such scaling, whereas Kelly's GLRT and the AMF are invariant, and CFAR, only with respect to common scaling.
引用
收藏
页码:427 / 438
页数:12
相关论文
共 27 条