Uncertainty Impacts of Climate Change and Downscaling Methods on Future Runoff Projections in the Biliu River Basin

被引:10
|
作者
Zhu, Xueping [1 ]
Zhang, Aoran [1 ]
Wu, Penglin [1 ]
Qi, Wei [2 ]
Fu, Guangtao [3 ]
Yue, Guangtao [1 ]
Liu, Xiaoqing [1 ]
机构
[1] Taiyuan Univ Technol, Coll Water Resource & Engn, Taiyuan 030024, Shanxi, Peoples R China
[2] Southern Univ Sci & Technol, Sch Environm Sci & Engn, Shenzhen 518055, Guangdong, Peoples R China
[3] Univ Exeter, Coll Engn Math & Phys Sci, Ctr Water Syst, North Pk Rd, Exeter EX4 4QF, Devon, England
基金
中国国家自然科学基金;
关键词
uncertainty impact; climate change; downscaling; runoff; FLOOD FREQUENCY; WATER-RESOURCES; TEMPERATURE; PRECIPITATION; SENSITIVITY; MODELS;
D O I
10.3390/w11102130
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper assesses the uncertainties in the projected future runoff resulting from climate change and downscaling methods in the Biliu River basin (Liaoning province, Northeast China). One widely used hydrological model SWAT, 11 Global Climate Models (GCMs), two statistical downscaling methods, four dynamical downscaling datasets, and two Representative Concentration Pathways (RCP4.5 and RCP8.5) are applied to construct 22 scenarios to project runoff. Hydrology variables in historical and future periods are compared to investigate their variations, and the uncertainties associated with climate change and downscaling methods are also analyzed. The results show that future temperatures will increase under all scenarios and will increase more under RCP8.5 than RCP4.5, while future precipitation will increase under 16 scenarios. Future runoff tends to decrease under 13 out of the 22 scenarios. We also found that the mean runoff changes ranging from -38.38% to 33.98%. Future monthly runoff increases in May, June, September, and October and decreases in all the other months. Different downscaling methods have little impact on the lower envelope of runoff, and they mainly impact the upper envelope of the runoff. The impact of climate change can be regarded as the main source of the runoff uncertainty during the flood period (from May to September), while the impact of downscaling methods can be regarded as the main source during the non-flood season (from October to April). This study separated the uncertainty impact of different factors, and the results could provide very important information for water resource management.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Multiple Climate Change Scenarios and Runoff Response in Biliu River
    Zhu, Xueping
    Zhang, Chi
    Qi, Wei
    Cai, Wenjun
    Zhao, Xuehua
    Wang, Xueni
    WATER, 2018, 10 (02)
  • [2] Impacts of climate change and LULC change on runoff in the Jinsha River Basin
    Chen, Qihui
    Chen, Hua
    Zhang, Jun
    Hou, Yukun
    Shen, Mingxi
    Chen, Jie
    Xu, Chongyu
    JOURNAL OF GEOGRAPHICAL SCIENCES, 2020, 30 (01) : 85 - 102
  • [3] Impacts of climate change and LULC change on runoff in the Jinsha River Basin
    Qihui Chen
    Hua Chen
    Jun Zhang
    Yukun Hou
    Mingxi Shen
    Jie Chen
    Chongyu Xu
    Journal of Geographical Sciences, 2020, 30 : 85 - 102
  • [4] Impacts of climate change and LULC change on runoff in the Jinsha River Basin
    CHEN Qihui
    CHEN Hua
    ZHANG Jun
    HOU Yukun
    SHEN Mingxi
    CHEN Jie
    XU Chongyu
    JournalofGeographicalSciences, 2020, 30 (01) : 85 - 102
  • [5] Uncertainty of runoff sensitivity to climate change in the Amazon River basin
    Carmona, Alejandra M.
    Renner, Maik
    Kleidon, Axel
    Poveda, German
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 2021, 1504 (01) : 76 - 94
  • [6] Impacts of climate change on headstream runoff in the Tarim River Basin
    Xu, Hailiang
    Zhou, Bin
    Song, Yudong
    HYDROLOGY RESEARCH, 2011, 42 (01): : 20 - 29
  • [7] Uncertainty in climate change projections of discharge for the Mekong River Basin
    Kingston, D. G.
    Thompson, J. R.
    Kite, G.
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2011, 15 (05) : 1459 - 1471
  • [8] Impacts of Climate Change on Runoff in the Heihe River Basin, China
    Liu, Qin
    Cheng, Peng
    Lyu, Meixia
    Yan, Xinyang
    Xiao, Qingping
    Li, Xiaoqin
    Wang, Lei
    Bao, Lili
    ATMOSPHERE, 2024, 15 (05)
  • [9] Uncertainty of runoff projections under changing climate in Wami River sub-basin
    Wambura, Frank Joseph
    Ndomba, Preksedis Marco
    Kongo, Victor
    Tumbo, Siza Donald
    JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2015, 4 : 333 - 348
  • [10] Uncertainty on runoff projections under changing climate in Wami River sub-basin
    不详
    JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2016, 5 : 57 - 58