The transcriptional interactome: gene expression in 3D

被引:119
|
作者
Schoenfelder, Stefan [1 ]
Clay, Ieuan [1 ]
Fraser, Peter [1 ]
机构
[1] Babraham Inst, Lab Chromatin & Gene Express, Cambridge CB22 3AT, England
基金
英国生物技术与生命科学研究理事会; 英国医学研究理事会;
关键词
BETA-GLOBIN LOCUS; MESSENGER-RNA; INTERCHROMOSOMAL ASSOCIATIONS; CHROMOSOME TERRITORIES; NUCLEAR-ORGANIZATION; SPATIAL-ORGANIZATION; COLORECTAL-CANCER; CONTROL REGION; CHROMATIN; RECEPTOR;
D O I
10.1016/j.gde.2010.02.002
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Transcription in the eukaryotic nucleus has long been thought of as conforming to a model in which RNA polymerase complexes are recruited to and track along isolated templates. However, a more dynamic role for chromatin in transcriptional regulation is materializing: enhancer elements interact with promoters forming loops that often bridge considerable distances and genomic loci, even located on different chromosomes, undergo chromosomal associations. These associations amass to form an extensive 'transcriptional interactome', enacted at functional subnuclear compartments, to which genes dynamically relocate. The emerging view is that long-range chromosomal associations between genomic regions, and their repositioning in the three-dimensional space of the nucleus, are key contributors to the regulation of gene expression.
引用
收藏
页码:127 / 133
页数:7
相关论文
共 50 条
  • [1] Human transcriptional interactome of chromatin contribute to gene co-expression
    Dong, Xiao
    Li, Chao
    Chen, Yunqin
    Ding, Guohui
    Li, Yixue
    BMC GENOMICS, 2010, 11
  • [2] The interdependence of gene-regulatory elements and the 3D genome
    Vermunt, Marit W.
    Zhang, Di
    Blobel, Gerd A.
    JOURNAL OF CELL BIOLOGY, 2019, 218 (01) : 12 - 26
  • [3] Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells
    Schoenfelder, Stefan
    Sexton, Tom
    Chakalova, Lyubomira
    Cope, Nathan F.
    Horton, Alice
    Andrews, Simon
    Kurukuti, Sreenivasulu
    Mitchell, Jennifer A.
    Umlauf, David
    Dimitrova, Daniela S.
    Eskiw, Christopher H.
    Luo, Yanquan
    Wei, Chia-Lin
    Ruan, Yijun
    Bieker, James J.
    Fraser, Peter
    NATURE GENETICS, 2010, 42 (01) : 53 - U71
  • [4] A generic 3D kinetic model of gene expression
    Zhdanov, Vladimir P.
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2012, 10 (02): : 533 - 537
  • [5] 3D shortcuts to gene regulation
    Hakim, Ofir
    Sung, Myong-Hee
    Hager, Gordon L.
    CURRENT OPINION IN CELL BIOLOGY, 2010, 22 (03) : 305 - 313
  • [6] Impact of Chromosome Fusions on 3D Genome Organization and Gene Expression in Budding Yeast
    Di Stefano, Marco
    Di Giovanni, Francesca
    Pozharskaia, Vasilisa
    Gomar-Alba, Merce
    Bau, Davide
    Carey, Lucas B.
    Marti-Renom, Marc A.
    Mendoza, Manuel
    GENETICS, 2020, 214 (03) : 651 - 667
  • [7] The 3D Genome in Transcriptional Regulation and Pluripotency
    Gorkin, David U.
    Leung, Danny
    Ren, Bing
    CELL STEM CELL, 2014, 14 (06) : 762 - 775
  • [8] Regulation of disease-associated gene expression in the 3D genome
    Krijger, Peter Hugo Lodewijk
    de laat, Wouter
    NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2016, 17 (12) : 771 - 782
  • [9] Differential 3D genome architecture and imprinted gene expression: cause or consequence?
    Moindrot, Benoit
    Imaizumi, Yui
    Feil, Robert
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2024, : 973 - 986
  • [10] 3D epigenomics and 3D epigenopathies
    Lee, Kyung-Hwan
    Kim, Jungyu
    Kim, Ji Hun
    BMB REPORTS, 2024, 57 (05) : 216 - 231