Dirichlet-Derived Multiple Topic Scene Classification Model for High Spatial Resolution Remote Sensing Imagery

被引:299
作者
Zhao, Bei [1 ,2 ,3 ]
Zhong, Yanfei [1 ,2 ]
Xia, Gui-Song [1 ,2 ]
Zhang, Liangpei [1 ,2 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China
[2] Wuhan Univ, Collaborat Innovat Ctr Geospatial Technol, Wuhan 430079, Peoples R China
[3] Chinese Univ Hong Kong, Dept Geog & Resource Management, Shatin, Hong Kong, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2016年 / 54卷 / 04期
基金
中国国家自然科学基金;
关键词
Terms High spatial resolution (HSR); latent Dirichlet allocation (LDA); multiple features; probabilistic latent semantic analysis (PLSA); remote sensing; scene classification; ALLOCATION; FEATURES;
D O I
10.1109/TGRS.2015.2496185
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Due to the complex arrangements of the ground objects in high spatial resolution (HSR) imagery scenes, HSR imagery scene classification is a challenging task, which is aimed at bridging the semantic gap between the low-level features and the high-level semantic concepts. A combination of multiple complementary features for HSR imagery scene classification is considered a potential way to improve the performance. However, the different types of features have different characteristics, and how to fuse the different types of features is a classic problem. In this paper, a Dirichlet-derived multiple topic model (DMTM) is proposed to fuse heterogeneous features at a topic level for HSR imagery scene classification. An efficient algorithm based on a variational expectation maximization framework is developed to infer the DMTM and estimate the parameters of the DMTM. The proposed DMTM scene classification method is able to incorporate different types of features with different characteristics, no matter whether these features are local or global, discrete or continuous. Meanwhile, the proposed DMTM can also reduce the dimension of the features representing the HSR images. In our experiments, three types of heterogeneous features, i.e., the local spectral feature, the local structural feature, and the global textural feature, were employed. The experimental results with three different HSR imagery data sets show that the three types of features are complementary. In addition, the proposed DMTM is able to reduce the dimension of the features representing the HSR images, to fuse the different types of features efficiently, and to improve the performance of the scene classification over that of other scene classification algorithms based on spatial pyramid matching, probabilistic latent semantic analysis, and latent Dirichlet allocation.
引用
收藏
页码:2108 / 2123
页数:16
相关论文
共 43 条
[1]   Learning Bayesian classifiers for scene classification with a visual grammar [J].
Aksoy, S ;
Koperski, K ;
Tusk, C ;
Marchisio, G ;
Tilton, JC .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (03) :581-589
[2]   A Comparative Study of Bag-of-Words and Bag-of-Topics Models of EO Image Patches [J].
Bahmanyar, Reza ;
Cui, Shiyong ;
Datcu, Mihai .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (06) :1357-1361
[3]  
Barla A, 2003, 2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 3, PROCEEDINGS, P513
[4]   Geographic Object-Based Image Analysis - Towards a new paradigm [J].
Blaschke, Thomas ;
Hay, Geoffrey J. ;
Kelly, Maggi ;
Lang, Stefan ;
Hofmann, Peter ;
Addink, Elisabeth ;
Feitosa, Raul Queiroz ;
van der Meer, Freek ;
van der Werff, Harald ;
van Coillie, Frieke ;
Tiede, Dirk .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 87 :180-191
[5]  
Blei D.M., 2007, P 20 INT C NEUR INF, P121, DOI DOI 10.5555/2981562.2981578
[6]   A CORRELATED TOPIC MODEL OF SCIENCE [J].
Blei, David M. ;
Lafferty, John D. .
ANNALS OF APPLIED STATISTICS, 2007, 1 (01) :17-35
[7]   Probabilistic Topic Models [J].
Blei, David M. .
COMMUNICATIONS OF THE ACM, 2012, 55 (04) :77-84
[8]   Latent Dirichlet allocation [J].
Blei, DM ;
Ng, AY ;
Jordan, MI .
JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) :993-1022
[9]   Scene classification using a hybrid generative/discriminative approach [J].
Bosch, Anna ;
Zisserman, Andrew ;
Munoz, Xavier .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2008, 30 (04) :712-727
[10]   Bridging the Semantic Gap for Satellite Image Annotation and Automatic Mapping Applications [J].
Bratasanu, Dragos ;
Nedelcu, Ion ;
Datcu, Mihai .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2011, 4 (01) :193-204