Geometric phase for entangled states of two spin-1/2 particles in rotating magnetic field

被引:45
作者
Tong, DM
Kwek, LC
Oh, CH
机构
[1] Natl Univ Singapore, Dept Phys, Singapore 119260, Singapore
[2] Nanyang Technol Univ, Natl Inst Educ, Singapore 639798, Singapore
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2003年 / 36卷 / 04期
关键词
D O I
10.1088/0305-4470/36/4/320
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The geometric phase for states of two spin-1/2 particles in rotating magnetic field is calculated, in particular, the noncyclic and cyclic non-adiabatic phases for the general case are explicitly derived and discussed. We find that the cyclic geometric phase for the entangled state can always be written as a sum of the phases of the two particles respectively; the same cannot be said for the noncyclic phase. We also investigate the geometric phase of mixed state of one particle in a biparticle system, and we find that the geometric phase for one subsystem of an entangled system is always affected by another subsystem of the entangled system.
引用
收藏
页码:1149 / 1157
页数:9
相关论文
共 18 条
[1]   PHASE-CHANGE DURING A CYCLIC QUANTUM EVOLUTION [J].
AHARONOV, Y ;
ANANDAN, J .
PHYSICAL REVIEW LETTERS, 1987, 58 (16) :1593-1596
[2]   GEOMETRIC QUANTUM PHASE AND ANGLES [J].
ANANDAN, J ;
AHARONOV, Y .
PHYSICAL REVIEW D, 1988, 38 (06) :1863-1870
[3]  
BARRY C, 2001, PHYS REV LETT, V86, P369
[5]   Cancellation of spin-orbit effects in quantum gates based on the exchange coupling in quantum dots [J].
Burkard, G ;
Loss, D .
PHYSICAL REVIEW LETTERS, 2002, 88 (04) :4-479034
[6]   Off-diagonal geometric phases [J].
Manini, N ;
Pistolesi, F .
PHYSICAL REVIEW LETTERS, 2000, 85 (15) :3067-3071
[7]   QUANTUM KINEMATIC APPROACH TO THE GEOMETRIC PHASE .1. GENERAL FORMALISM [J].
MUKUNDA, N ;
SIMON, R .
ANNALS OF PHYSICS, 1993, 228 (02) :205-268
[8]   NEW DERIVATION OF THE GEOMETRIC PHASE [J].
PATI, AK .
PHYSICS LETTERS A, 1995, 202 (01) :40-45
[9]   GENERAL SETTING FOR BERRYS PHASE [J].
SAMUEL, J ;
BHANDARI, R .
PHYSICAL REVIEW LETTERS, 1988, 60 (23) :2339-2342
[10]  
Schrodinger E., 1980, Proc. Amer. Phil. Soc., V23, P323, DOI DOI 10.1007/BF01493128