Avalanche photodetectors with photon trapping structures for biomedical imaging applications

被引:34
作者
Bartolo-Perez, Cesar [1 ]
Chandiparsi, Soroush [1 ]
Mayet, Ahmed S. [1 ]
Cansizoglu, Hilal [1 ]
Gao, Yang [1 ]
Qarony, Wayesh [1 ]
AhAmed, Ahasan [1 ]
Wang, Shih-Yuan [2 ]
Cherry, Simon R. [3 ]
Islam, M. Saif [1 ]
Arino-Estrada, Gerard [3 ]
机构
[1] Univ Calif Davis, Elect & Comp Engn, Davis, CA 95616 USA
[2] W&WSens Devices Inc, 4546 El Camino,Suite 215, Los Altos, CA 94022 USA
[3] Univ Calif Davis, Dept Biomed Engn, Davis, CA 95616 USA
关键词
HIGH-SPEED; PHOTODIODES; NOISE; EFFICIENCY; RECEIVER;
D O I
10.1364/OE.421857
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Enhancing photon detection efficiency and time resolution in photodetectors in the entire visible range is critical to improve the image quality of time-of-flight (TOF)-based imaging systems and fluorescence lifetime imaging (FLIM). In this work, we evaluate the gain, detection efficiency, and timing performance of avalanche photodiodes (APD) with photon trapping nanostructures for photons with 450 nm and 850 nm wavelengths. At 850 nm wavelength, our photon trapping avalanche photodiodes showed 30 times higher gain, an increase from 16% to >60% enhanced absorption efficiency, and a 50% reduction in the full width at half maximum (FWHM) pulse response time close to the breakdown voltage. At 450 nm wavelength, the external quantum efficiency increased from 54% to 82%, while the gain was enhanced more than 20-fold. Therefore, silicon APDs with photon trapping structures exhibited a dramatic increase in absorption compared to control devices. Results suggest very thin devices with fast timing properties and high absorption between the near-ultraviolet and the near infrared region can be manufactured for high-speed applications in biomedical imaging. This study paves the way towards obtaining single photon detectors with photon trapping structures with gains above 106 for the entire visible range. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:19024 / 19033
页数:10
相关论文
共 31 条
[1]  
Arino-Estrada G., 2020, IEEE T RADIAT PLASMA, V1
[2]  
Bartolo-Perez C., ADV PHOTONICS RES
[3]   Avalanche photodiode image sensor in standard BiCMOS technology [J].
Biber, A ;
Seitz, P ;
Jäckel, H .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2000, 47 (11) :2241-2243
[4]   Optical Wireless APD Receiver With High Background-Light Immunity for Increased Communication Distances [J].
Brandl, Paul ;
Jukic, Tomislav ;
Enne, Reinhard ;
Schneider-Hornstein, Kerstin ;
Zimmermann, Horst .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2016, 51 (07) :1663-1673
[5]   Single-photon avalanche diode imagers in biophotonics: review and outlook [J].
Bruschini, Claudio ;
Homulle, Harald ;
Antolovic, Ivan Michel ;
Burri, Samuel ;
Charbon, Edoardo .
LIGHT-SCIENCE & APPLICATIONS, 2019, 8 (1)
[6]   Recent Advances in Avalanche Photodiodes [J].
Campbell, Joe C. .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2016, 34 (02) :278-285
[7]   Surface-illuminated photon-trapping high-speed Ge-on-Si photodiodes with improved efficiency up to 1700 nm [J].
Cansizoglu, Hilal ;
Bartolo-Perez, Cesar ;
Gao, Yang ;
Devine, Ekaterina Ponizovskaya ;
Ghandiparsi, Soroush ;
Polat, kazim G. ;
Mamtaz, Hasina H. ;
Yamada, Toshishige ;
Elrefaie, Aly F. ;
Wang, Shih-Yuan ;
Islam, M. Saif .
PHOTONICS RESEARCH, 2018, 6 (07) :734-742
[8]   Efficient absorption enhancement approaches for AllnAsSb avalanche photodiodes for 2-μm applications [J].
Chen, Dekang ;
Sun, Keye ;
Jones, Andrew H. ;
Campbell, Joe C. .
OPTICS EXPRESS, 2020, 28 (17) :24379-24388
[9]   Optimizing Silicon photomultipliers for Quantum Optics [J].
Chesi, Giovanni ;
Malinverno, Luca ;
Allevi, Alessia ;
Santoro, Romualdo ;
Caccia, Massimo ;
Martemiyanov, Alexander ;
Bondani, Maria .
SCIENTIFIC REPORTS, 2019, 9 (1)
[10]   Optimizing Single-Photon Avalanche Photodiodes for Dynamic Quantum Key Distribution Networks [J].
Fan-Yuan, Guan-Jie ;
Teng, Jun ;
Wang, Shuang ;
Yin, Zhen-Qiang ;
Chen, Wei ;
He, De-Yong ;
Guo, Guang-Can ;
Han, Zheng-Fu .
PHYSICAL REVIEW APPLIED, 2020, 13 (05)