Asymptotic formula for eigenvalues of simple pendulum problems

被引:0
作者
Shibata, T [1 ]
机构
[1] Hiroshima Univ, Fac Integrated Arts & Sci, Div Math & Informat Sci, Higashihiroshima 7398521, Japan
关键词
asymptotic formula; variational characterization of solution; simple pendulum;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the nonlinear eigenvalue problem -Deltau=lambdaf(u), u>0 in B-R, u=0 on partial derivativeB(R), where B-R is a ball with radius R>0 and lambda>0 is a parameter. Under the appropriate conditions of f, it is known that for a given 0<epsilon<1, there exists (lambda,u)=(lambda(epsilon),u(epsilon)) satisfying the equation with integral(BR)F(u(epsilon)(x)) dx=\B-R\F(u(0))(1-epsilon), where F(u)=integral(0)(u)f(s) ds and u(0)>0 is the smallest zero of f in R+. Furthermore, u(epsilon)(x)-->u(0) (xis an element ofB(R)) and lambda(epsilon)-->infinity as epsilon-->0. This concept of parametrization of solution pair by a new parameter epsilon is based on the variational structure of the equation. We establish the asymptotic formulas for lambda(epsilon) as epsilon-->0 with the 'optimal' estimate of the second term.
引用
收藏
页码:83 / 91
页数:9
相关论文
共 13 条
[1]   UNIQUENESS OF THE SOLUTION OF A SEMILINEAR BOUNDARY-VALUE PROBLEM [J].
ANGENENT, SB .
MATHEMATISCHE ANNALEN, 1985, 272 (01) :129-138
[2]  
[Anonymous], PITMAN RES NOTES MAT
[3]  
CLEMENT P, 1987, ANN SCUOLA NORM SUP, V14, P97
[4]  
Crandal M.G., 1971, J. Funct. Anal, V8, P321, DOI 10.1016/0022-1236(71)90015-2
[5]   ON THE GLOBAL STRUCTURE OF THE SET OF POSITIVE SOLUTIONS OF SOME SEMILINEAR ELLIPTIC BOUNDARY-VALUE-PROBLEMS [J].
FRAILE, JM ;
LOPEZGOMEZ, J ;
DELIS, JC .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 123 (01) :180-212
[6]   UNIQUENESS OF POSITIVE SOLUTIONS OF NONLINEAR ELLIPTIC BOUNDARY-VALUE PROBLEMS [J].
HESS, P .
MATHEMATISCHE ZEITSCHRIFT, 1977, 154 (01) :17-18
[7]  
HOWES FA, 1979, COMMUN PART DIFF EQ, V4, P1
[8]  
O'Malley Jr R. E., 1989, SINGULAR PERTURBATIO
[9]   Precise spectral asymptotics for nonlinear Sturm-Liouville problems [J].
Shibata, T .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 180 (02) :374-394
[10]   Precise spectral asymptotics for the Dirichlet problem -u"(t)+g(u(t))=λ sin u(t) [J].
Shibata, T .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 267 (02) :576-598