The role of aerodynamic drag in propagation of interplanetary coronal mass ejections

被引:100
|
作者
Vrsnak, B. [1 ]
Zic, T. [1 ]
Falkenberg, T. V. [2 ]
Moestl, C. [3 ,4 ]
Vennerstrom, S. [2 ]
Vrbanec, D. [1 ]
机构
[1] Univ Zagreb, Fac Geodesy, Hvar Observ, Zagreb 10000, Croatia
[2] Tech Univ Denmark, Natl Space Inst, DK-2100 Copenhagen, Denmark
[3] Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria
[4] Graz Univ, Inst Phys, A-8010 Graz, Austria
来源
ASTRONOMY & ASTROPHYSICS | 2010年 / 512卷
基金
奥地利科学基金会;
关键词
Sun: coronal mass ejections (CMEs); solar-terrestrial relations; solar wind; magnetohydrodynamics (MHD); Sun: corona; SOLAR-WIND; GEOMAGNETIC STORMS; CONE MODEL; HALO CMES; MAGNETIC-FIELD; WHITE-LIGHT; DYNAMICS; ARRIVAL; TIME; EARTH;
D O I
10.1051/0004-6361/200913482
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. The propagation of interplanetary coronal mass ejections (ICMEs) and the forecast of their arrival on Earth is one of the central issues of space weather studies. Aims. We investigate to which degree various ICME parameters (mass, size, take-off speed) and the ambient solar-wind parameters (density and velocity) affect the ICME Sun-Earth transit time. Methods. We study solutions of a drag-based equation of motion by systematically varying the input parameters. The analysis is focused on ICME transit times and 1 AU velocities. Results. The model results reveal that wide ICMEs of low masses adjust to the solar-wind speed already close to the sun, so the transit time is determined primarily by the solar-wind speed. The shortest transit times and accordingly the highest 1 AU velocities are related to narrow and massive ICMEs (i.e. high-density eruptions) propagating in high-speed solar wind streams. We apply the model to the Sun-Earth event associated with the CME of 25 July 2004 and compare the results with the outcome of the numerical MHD modeling.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Exploring the radial evolution of interplanetary coronal mass ejections using EUHFORIA
    Scolini, C.
    Dasso, S.
    Rodriguez, L.
    Zhukov, A. N.
    Poedts, S.
    ASTRONOMY & ASTROPHYSICS, 2021, 649
  • [22] On the evolution of coronal mass ejections in the interplanetary medium
    Howard, T. A.
    Fry, C. D.
    Johnston, J. C.
    Webb, D. F.
    ASTROPHYSICAL JOURNAL, 2007, 667 (01) : 610 - 625
  • [23] ANATOMY OF DEPLETED INTERPLANETARY CORONAL MASS EJECTIONS
    Kocher, M.
    Lepri, S. T.
    Landi, E.
    Zhao, L.
    Manchester, W. B.
    ASTROPHYSICAL JOURNAL, 2017, 834 (02)
  • [24] Prediction of Geomagnetic Storms Associated with Interplanetary Coronal Mass Ejections
    Rodkin, D. G.
    Slemzin, V. A.
    ASTRONOMY REPORTS, 2024, 68 (02) : 192 - 199
  • [25] Interplanetary Coronal Mass Ejections Observed in the Heliosphere: 3. Physical Implications
    Howard, Timothy A.
    Tappin, S. James
    SPACE SCIENCE REVIEWS, 2009, 147 (1-2) : 89 - 110
  • [26] Drag Force on Coronal Mass Ejections (CMEs)
    Lin, Chia-Hsien
    Chen, James
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2022, 127 (06)
  • [27] CORONAL MASS EJECTIONS ASSOCIATED WITH INTERPLANETARY SHOCKS AND THEIR RELATION TO CORONAL HOLES
    BRAVO, S
    PEREZENRIQUEZ, R
    REVISTA MEXICANA DE ASTRONOMIA Y ASTROFISICA, 1994, 28 (01) : 17 - 25
  • [28] Helium Abundance Variations in Interplanetary Coronal Mass Ejections
    Khokhlachev, A. A.
    Yermolaev, Yu, I
    Lodkina, I. G.
    Riazantseva, M. O.
    Rakhmanova, L. S.
    COSMIC RESEARCH, 2022, 60 (02) : 67 - 72
  • [29] Coronal mass ejections and their sheath regions in interplanetary space
    Emilia Kilpua
    Hannu E. J. Koskinen
    Tuija I. Pulkkinen
    Living Reviews in Solar Physics, 2017, 14
  • [30] Magnetic Reconnection in the Interior of Interplanetary Coronal Mass Ejections
    Fermo, R. L.
    Opher, M.
    Drake, J. F.
    PHYSICAL REVIEW LETTERS, 2014, 113 (03)