Linear instability criterion for the Korteweg-de Vries equation on metric star graphs

被引:10
|
作者
Angulo Pava, Jaime [1 ]
Cavalcante, Marcio [2 ]
机构
[1] IME USP, Dept Math, Rua Matao 1010,Cidade Univ, BR-05508090 Sao Paulo, SP, Brazil
[2] Univ Fed Alagoas, Inst Math, Maceio, AL, Brazil
关键词
Korteweg– de Vries model; star graph; instability; δ -type interaction; extension theory; perturbation theory; BOUNDARY-VALUE-PROBLEMS; STABILITY THEORY; STANDING WAVES; EVOLUTION-EQUATIONS; TRAVELING-WAVES; SOLITARY WAVES; WELL-POSEDNESS; CAUCHY-PROBLEM; NLS EQUATION; CONTROLLABILITY;
D O I
10.1088/1361-6544/abea6b
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this work is to establish a novel linear instability criterion for the Korteweg-de Vries (KdV) model on metric graphs. In the case of balanced graphs with a structure represented by a finite collection of semi-infinite edges and with boundary condition of delta-type interaction at the graph-vertex, we show that the continuous tail and bump profiles are linearly unstable. In this case, the use of the analytic perturbation theory of operators as well as the extension theory of symmetric operators is fundamental in our stability analysis. The arguments showed in this investigation have prospects in the study of the instability of stationary waves solutions for nonlinear evolution equations on metric graph.
引用
收藏
页码:3373 / 3410
页数:38
相关论文
共 50 条
  • [1] Dynamics of the Korteweg-de Vries Equation on a Balanced Metric Graph
    Angulo, Jaime
    Cavalcante, Marcio
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2025, 56 (01):
  • [2] The Korteweg-de Vries equation on a metric star graph
    Cavalcante, Marcio
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (05):
  • [3] The Modulational Instability for a Generalized Korteweg-de Vries Equation
    Bronski, Jared C.
    Johnson, Mathew A.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 197 (02) : 357 - 400
  • [4] Periodic Waves in the Fractional Modified Korteweg-de Vries Equation
    Natali, Fabio
    Le, Uyen
    Pelinovsky, Dmitry E.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2022, 34 (02) : 1601 - 1640
  • [5] Whitham theory for perturbed Korteweg-de Vries equation
    Kamchatnov, A. M.
    PHYSICA D-NONLINEAR PHENOMENA, 2016, 333 : 99 - 106
  • [6] RAPID EXPONENTIAL STABILIZATION FOR A LINEAR KORTEWEG-DE VRIES EQUATION
    Cerpa, Eduardo
    Crepeau, Emmanuelle
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2009, 11 (03): : 655 - 668
  • [7] Output Feedback Control of the Linear Korteweg-de Vries Equation
    Marx, Swann
    Cerpa, Eduardo
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 2083 - 2087
  • [8] Boundary behavior of the solution to the linear Korteweg-De Vries equation on the half line
    Chatziafratis, Andreas
    Kamvissis, Spyridon
    Stratis, Ioannis G.
    STUDIES IN APPLIED MATHEMATICS, 2023, 150 (02) : 339 - 379
  • [9] On the singular solutions of the Korteweg-de Vries equation
    S. I. Pokhozhaev
    Mathematical Notes, 2010, 88 : 741 - 747
  • [10] CONTROL OF A KORTEWEG-DE VRIES EQUATION: A TUTORIAL
    Cerpa, Eduardo
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2014, 4 (01) : 45 - 99