Calculation of kinetic parameters for mixed TRIGA cores with Monte Carlo

被引:72
|
作者
Snoj, Luka [1 ]
Kavcic, Andrej [2 ]
Zerovnik, Gasper [1 ]
Ravnik, Matjaz [1 ]
机构
[1] Jozef Stefan Inst, Reactor Phys Div, SI-1000 Ljubljana, Slovenia
[2] Jozef Stefan Inst, Nucl Training Ctr, SI-1000 Ljubljana, Slovenia
关键词
II BENCHMARK EXPERIMENT; DELAYED NEUTRONS; SIMULATION;
D O I
10.1016/j.anucene.2009.10.020
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Modern Monte Carlo transport codes in combination with fast computer clusters enable very accurate calculations of the most important reactor kinetic parameters. Such are the effective delayed neutron fraction, beta(eff), and mean neutron generation time, Lambda. We calculate beta(eff) and Lambda for various realistic and hypothetical annular TRIGA Mark II cores with different types and amount of fuel. It is observed that the effective delayed neutron fraction strongly depends on the number of fuel elements in the core or on the core size. beta(eff) varies for 12 wt.% uranium standard fuel with 20% enrichment from 0.0080 for a small core (43 fuel rods) to 0.0070 for a full core (90 fuel rods). It is found that calculated value of beta(eff) strongly depends also on the nuclear data set used in calculations. The prompt neutron lifetime mainly depends on the amount (due to either content or enrichment) of U-235 in the fuel as it is approximately inversely proportional to the average absorption cross-section. It varies from 28 mu s for 30 wt.% uranium content fuelled core to 48 mu s for 8.5 wt.% uranium content LEU fuelled core. Description of the calculation method and detailed results are presented in the paper. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:223 / 229
页数:7
相关论文
共 50 条
  • [1] An evaluation of calculation parameters in the EGSnrc/BEAMnrc Monte Carlo codes and their effect on surface dose calculation
    Kim, Jung-Ha
    Hill, Robin
    Kuncic, Zdenka
    PHYSICS IN MEDICINE AND BIOLOGY, 2012, 57 (14) : N267 - N278
  • [2] Monte Carlo calculation of In0.53Ga0.47As and InAs noise parameters
    Karishy, Slyman
    Palermo, Christophe
    Sabatini, Giulio
    Marinchio, Hugues
    Varani, Luca
    Mateos, Javier
    Gonzalez, Tomas
    2017 INTERNATIONAL CONFERENCE ON NOISE AND FLUCTUATIONS (ICNF), 2017,
  • [3] Kinetic Monte Carlo Study of the Sensitivity of OLED Efficiency and Lifetime to Materials Parameters
    Coehoorn, Reinder
    van Eersel, Harm
    Bobbert, Peter A.
    Janssen, Rene A. J.
    ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (13) : 2024 - 2037
  • [4] Generic parameters of trajectory-extending kinetic Monte Carlo for calculating diffusion coefficients
    Tien, Wu-Jhao
    Chiu, Chi-cheng
    AIP ADVANCES, 2018, 8 (06)
  • [5] Monte Carlo and Kinetic Monte Carlo Models for Deposition Processes: A Review of Recent Works
    Cheimarios, Nikolaos
    To, Deifilia
    Kokkoris, George
    Memos, George
    Boudouvis, Andreas G.
    FRONTIERS IN PHYSICS, 2021, 9
  • [6] Monte Carlo calculation of the thermodynamic properties of water
    Teplukhin, A. V.
    JOURNAL OF STRUCTURAL CHEMISTRY, 2013, 54 : 221 - 232
  • [7] Analysis of ITU TRIGA Mark II research reactor using Monte Carlo method
    Turkmen, Mehmet
    Colak, Uner
    PROGRESS IN NUCLEAR ENERGY, 2014, 77 : 152 - 159
  • [8] A local superbasin kinetic Monte Carlo method
    Fichthorn, Kristen A.
    Lin, Yangzheng
    JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (16)
  • [9] Octree-search Kinetic Monte Carlo
    Gosalvez, M. A.
    Xing, Y.
    Sato, K.
    Nieminen, R. M.
    SENSORS AND ACTUATORS A-PHYSICAL, 2010, 159 (01) : 64 - 68
  • [10] kmos: A lattice kinetic Monte Carlo framework
    Hoffmann, Max J.
    Matera, Sebastian
    Reuter, Karsten
    COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (07) : 2138 - 2150