Microbial carbon use efficiency and priming effect regulate soil carbon storage under nitrogen deposition by slowing soil organic matter decomposition

被引:100
作者
Liu, Weixing [1 ]
Qiao, Chunlian [1 ,2 ]
Yang, Sen [1 ,3 ]
Bai, Wenming [1 ]
Liu, Lingli [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, Beijing 100093, Peoples R China
[2] Xinyang Normal Univ, Coll Life Sci, Xinyang 464000, Henan, Peoples R China
[3] Univ Chinese Acad Sci, Yuquan Rd, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
C-13 labeled substrates; Carbon sequestration; Fertilization; Microbial community; Microbial respiration; Soil organic matter turnover; PLANT LITTER DECOMPOSITION; TEMPERATURE SENSITIVITY; FUNGAL RESIDUES; N DEPOSITION; CO2; EFFLUX; BACTERIAL; COMMUNITIES; BIOMASS; FERTILIZATION; INPUTS;
D O I
10.1016/j.geoderma.2018.07.008
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Microbial carbon use efficiency (CUE) strongly influences the rate of soil organic carbon (SOC) formation by mediating C loss via microbial respiration, whereas the priming effect plays a crucial role in regulating the stability of SOC. Nitrogen (N) deposition increases N availability and alters litter quality and quantity, both of which could strongly affect the CUE and priming effect. However, it remains unclear whether and how, under N deposition, the CUE and priming effect could affect soil C cycling. In this study, we conducted a consecutive 12-yr N addition experiment in a temperate steppe. We evaluated how increasing N inputs affect soil C accumulation, microbial respiration, microbial biomass and composition in the field. We also performed an incubation experiment by adding C-13 labeled glucose and phenol to the pre-incubated soils to test how N addition affects microbial CUE and the priming effects on stable soil C. Our field experiment showed that N addition increased soil organic C concentration and decreased soil microbial respiration, microbial total phospholipid fatty acids (PLFAs), and fungi to bacteria (F:B) ratio. Our incubation experiments indicated that N addition increased microbial CUE of glucose but decreased that of phenol. The priming effects of both glucose and phenol were suppressed by N addition. Redundancy analysis (RDA) showed the importance of fungi in regulating microbial CUE and priming effect Specifically, multi-model averaging suggested that the decreased fungal biomass under N addition was the most important predictor for changes in CUE of glucose, while decreased fungal biomass and F:B ratio were the most important predictors for changes in the CUE and priming effects. In addition, the increased CUE of glucose best explained the decreased microbial respiration, and the reduced priming effect of glucose best explained the increased SOC under N addition. Overall, our finding suggested that N addition would alter microbial CUE and the priming effects on stable soil C. The different responses of CUE and priming effects to glucose and phenol addition imply that the decreased microbial respiration and increased C storage under N deposition could be more attributed to labile C inputs rather than recalcitrant C inputs.
引用
收藏
页码:37 / 44
页数:8
相关论文
共 52 条
  • [1] Interactive Effects of Time, CO2, N, and Diversity on Total Belowground Carbon Allocation and Ecosystem Carbon Storage in a Grassland Community
    Adair, E. Carol
    Reich, Peter B.
    Hobbie, Sarah E.
    Knops, Johannes M. H.
    [J]. ECOSYSTEMS, 2009, 12 (06) : 1037 - 1052
  • [2] Combining theory and experiment to understand effects of inorganic nitrogen on litter decomposition
    Ågren, GI
    Bosatta, E
    Magill, AH
    [J]. OECOLOGIA, 2001, 128 (01) : 94 - 98
  • [3] Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands
    Bai, Yongfei
    Wu, Jianguo
    Clark, Christopher M.
    Naeem, Shahid
    Pan, Qingmin
    Huang, Jianhui
    Zhang, Lixia
    Han, Xingguo
    [J]. GLOBAL CHANGE BIOLOGY, 2010, 16 (01) : 358 - 372
  • [4] Priming effect and C storage in semi-arid no-till spring crop rotations
    Bell, JM
    Smith, JL
    Bailey, VL
    Bolton, H
    [J]. BIOLOGY AND FERTILITY OF SOILS, 2003, 37 (04) : 237 - 244
  • [5] Long-term reactive nitrogen loading alters soil carbon and microbial community properties in a subalpine forest ecosystem
    Boot, Claudia M.
    Hall, Ed K.
    Denef, Karolien
    Baron, Jill S.
    [J]. SOIL BIOLOGY & BIOCHEMISTRY, 2016, 92 : 211 - 220
  • [6] Influence of microbial populations and residue quality on aggregate stability
    Bossuyt, H
    Denef, K
    Six, J
    Frey, SD
    Merckx, R
    Paustian, K
    [J]. APPLIED SOIL ECOLOGY, 2001, 16 (03) : 195 - 208
  • [7] Negative impact of nitrogen deposition on soil buffering capacity
    Bowman, William D.
    Cleveland, Cory C.
    Halada, Lubos
    Hresko, Juraj
    Baron, Jill S.
    [J]. NATURE GEOSCIENCE, 2008, 1 (11) : 767 - 770
  • [8] Microbial community utilization of added carbon substrates in response to long-term carbon input manipulation
    Brant, Justin B.
    Sulzman, Elizabeth W.
    Myrold, David D.
    [J]. SOIL BIOLOGY & BIOCHEMISTRY, 2006, 38 (08) : 2219 - 2232
  • [9] Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories
    Chen, Ruirui
    Senbayram, Mehmet
    Blagodatsky, Sergey
    Myachina, Olga
    Dittert, Klaus
    Lin, Xiangui
    Blagodatskaya, Evgenia
    Kuzyakov, Yakov
    [J]. GLOBAL CHANGE BIOLOGY, 2014, 20 (07) : 2356 - 2367
  • [10] The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?
    Cotrufo, M. Francesca
    Wallenstein, Matthew D.
    Boot, Claudia M.
    Denef, Karolien
    Paul, Eldor
    [J]. GLOBAL CHANGE BIOLOGY, 2013, 19 (04) : 988 - 995