Nonlinear p(x)-Elliptic Equations in General Domains

被引:1
作者
Azroul, Elhoussine [1 ]
Khouakhi, Moussa [1 ]
Yazough, Chihab [2 ]
机构
[1] Dhar El Mahraz Sidi Mohamed Ben Abdellah Univ, Fac Sci, Lab Math Anal & Applicat, Atlas Fes 1796, Morocco
[2] Sidi Mohamed Ben Abdellah Univ, Fac Polydisciplinary Taza, LSI, BP 1223, Fes, Morocco
关键词
Sobolev spaces with variable exponents; Strongly nonlinear elliptic equations; Unbounded domains; Existence results; Boundedness of solutions; ELLIPTIC-EQUATIONS; NATURAL GROWTH; VARIATIONAL-PROBLEMS; VARIABLE EXPONENT; EXISTENCE; REGULARITY;
D O I
10.1007/s12591-018-0433-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we prove an existence result and some regularity for the solution of the strongly nonlinear p(x)-elliptic problem of the form: - div a(x , u, Vu) + c(x, u)+ H(x, u, Vu) = f(x) - div g(x) in Omega, u is an element of W-0(1,p(.)) (Omega), where H(x, s, xi) and c(x, s) are a nonlinear terms satisfying some growth condition but no sign condition on H. The assumptions on the source terms load to the existence of solutions. The domain Omega is allowed to have infinite Lebesgue measure.
引用
收藏
页码:607 / 630
页数:24
相关论文
共 28 条
[11]   Lebesgue and Sobolev Spaces with Variable Exponents [J].
Diening, Lars ;
Harjulehto, Petteri ;
Hasto, Peter ;
Ruzicka, Michael .
LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 :1-+
[12]  
Duan L, 2014, ELECTRON J QUAL THEO, P1
[13]   QUASILINEAR ELLIPTIC PROBLEMS IN UNBOUNDED DOMAINS [J].
EDMUNDS, DE ;
WEBB, JRL .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1973, 334 (1598) :397-410
[14]   Lipschitz continuity for energy integrals with variable exponents [J].
Eleuteri, Michela ;
Marcellini, Paolo ;
Mascolo, Elvira .
RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2016, 27 (01) :61-87
[15]  
Fan X. L., 1998, J. Gansu Educ. College., V12, P1
[16]   Nonlinear problems having natural growth in the gradient: an existence result when the source terms are small [J].
Ferone, V ;
Murat, F .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 42 (07) :1309-1326
[17]   Sobolev inequalities with variable exponent attaining the values 1 and n [J].
Harjulehto, Petteri ;
Hasto, Peter .
PUBLICACIONS MATEMATIQUES, 2008, 52 (02) :347-363
[18]  
Lions J.L.:., 1969, Quelques methodes de resolution des problemes aux limites non lineaires
[19]   REGULARITY FOR ELLIPTIC-EQUATIONS WITH GENERAL GROWTH-CONDITIONS [J].
MARCELLINI, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 105 (02) :296-333
[20]  
MARCELLINI P, 1989, ARCH RATION MECH AN, V105, P267