Increased heat dissipation with the X-divertor geometry facilitating detachment onset at lower density in DIII-D

被引:21
作者
Covele, B. [1 ]
Kotschenreuther, M. [2 ]
Mahajan, S. [2 ]
Valanju, P. [2 ]
Leonard, A. [1 ]
Watkins, J. [3 ]
Makowski, M. [4 ]
Fenstermacher, M. [4 ]
Si, H. [5 ]
机构
[1] Gen Atom, San Diego, CA 92121 USA
[2] Univ Texas Austin, Austin, TX 78712 USA
[3] Sandia Natl Labs, Albuquerque, NM USA
[4] Lawrence Livermore Natl Lab, Livermore, CA USA
[5] Chinese Acad Sci, Inst Plasma Phys, Hefei, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
X-divertor; detachment; DIII-D; flux expansion; magnetic geometry; divertor; PLASMA;
D O I
10.1088/1741-4326/aa7644
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The X-divertor geometry on DIII-D has demonstrated reduced particle and heat fluxes to the target, facilitating detachment onset at 10-20% lower upstream density and higher H-mode pedestal pressure than a standard divertor. SOLPS modeling suggests that this effect cannot be explained by an increase in total connection length alone, but rather by the addition of connection length specifically in the power-dissipating volume near the target, via poloidal flux expansion and flaring. However, poloidal flaring must work synergistically with divertor closure to most effectively reduce the detachment density threshold. The model also points to carbon radiation as the primary driver of power dissipation in divertors on the DIII-D floor, which is consistent with experimental observations. Sustainable divertor detachment at lower density has beneficial consequences for energy confinement and current drive efficiency for core operation, while simultaneously satisfying the exhaust requirements of the plasma-facing components.
引用
收藏
页数:10
相关论文
共 17 条
[1]   Power exhaust by SOL and pedestal radiation at ASDEX Upgrade and JET [J].
Bernert, M. ;
Wischmeier, M. ;
Huber, A. ;
Reimold, F. ;
Lipschultz, B. ;
Lowry, C. ;
Brezinsek, S. ;
Dux, R. ;
Eich, T. ;
Kallenbach, A. ;
Lebschy, A. ;
Maggi, C. ;
McDermott, R. ;
Puetterich, T. ;
Wiesen, S. .
NUCLEAR MATERIALS AND ENERGY, 2017, 12 :111-118
[2]   Modeling of detachment experiments at DIII-D [J].
Canik, J. M. ;
Briesemeister, A. R. ;
Lasnier, C. J. ;
Leonard, A. W. ;
Lore, J. D. ;
McLean, A. G. ;
Watkins, J. G. .
JOURNAL OF NUCLEAR MATERIALS, 2015, 463 :569-572
[3]   SOLPS modelling of ASDEX upgrade H-mode plasma [J].
Chankin, A. V. ;
Coster, D. P. ;
Dux, R. ;
Fuchs, Ch ;
Haas, G. ;
Herrmann, A. ;
D Horton, L. ;
Kallenbach, A. ;
Kaufmann, M. ;
Konz, Ch ;
Lackner, K. ;
Maggi, C. ;
Mueller, H. W. ;
Neuhauser, J. ;
Pugno, R. ;
Reich, M. ;
Schneider, W. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2006, 48 (06) :839-868
[4]   An exploration of advanced X-divertor scenarios on ITER [J].
Covele, B. ;
Valanju, P. ;
Kotschenreuther, M. ;
Mahajan, S. .
NUCLEAR FUSION, 2014, 54 (07)
[5]   A NEW LOOK AT DENSITY LIMITS IN TOKAMAKS [J].
GREENWALD, M ;
TERRY, JL ;
WOLFE, SM ;
EJIMA, S ;
BELL, MG ;
KAYE, SM ;
NEILSON, GH .
NUCLEAR FUSION, 1988, 28 (12) :2199-2207
[6]  
Kotschenreuther M., 2004, P 20 INT C FUS EN VI
[7]   Magnetic geometry and physics of advanced divertors: The X-divertor and the snowflake [J].
Kotschenreuther, Mike ;
Valanju, Prashant ;
Covele, Brent ;
Mahajan, Swadesh .
PHYSICS OF PLASMAS, 2013, 20 (10)
[8]   Divertor plasma detachment [J].
Krasheninnikov, S. I. ;
Kukushkin, A. S. ;
Pshenov, A. A. .
PHYSICS OF PLASMAS, 2016, 23 (05)
[9]   Sensitivity of detachment extent to magnetic configuration and external parameters [J].
Lipschultz, Bruce ;
Parra, Felix I. ;
Hutchinson, Ian H. .
NUCLEAR FUSION, 2016, 56 (05)
[10]   Plasma detachment in JET Mark I divertor experiments [J].
Loarte, A ;
Monk, RD ;
Martin-Solis, JR ;
Campbell, DJ ;
Chankin, AV ;
Clement, S ;
Davies, SJ ;
Ehrenberg, J ;
Erents, SK ;
Guo, HY ;
Harbour, PJ ;
Horton, LD ;
Ingesson, LC ;
Jackel, H ;
Lingertat, J ;
Lowry, CG ;
Maggi, CF ;
Matthews, GF ;
McCormick, K ;
O'Brien, DP ;
Reichle, R ;
Saibene, G ;
Smith, RJ ;
Stamp, MF ;
Stork, D ;
Vlases, GC .
NUCLEAR FUSION, 1998, 38 (03) :331-371