Integration, exploration, and analysis of high-dimensional single-cell cytometry data using Spectre

被引:76
作者
Ashhurst, Thomas Myles [1 ,2 ,3 ,4 ]
Marsh-Wakefield, Felix [4 ,5 ,6 ]
Putri, Givanna Haryono [4 ,7 ]
Spiteri, Alanna Gabrielle [4 ,8 ]
Shinko, Diana [1 ,2 ,4 ]
Read, Mark Norman [4 ,7 ,9 ]
Smith, Adrian Lloyd [1 ,2 ,4 ]
King, Nicholas Jonathan Cole [1 ,2 ,3 ,4 ,8 ,10 ]
机构
[1] Centenary Inst, Charles Perkins Ctr, Sydney Cytometry Core Res Facil, Sydney, NSW, Australia
[2] Univ Sydney, Sydney, NSW, Australia
[3] Univ Sydney, Marie Bashir Inst Infect Dis & Biosecur, Sydney, NSW, Australia
[4] Univ Sydney, Charles Perkins Ctr, Sydney, NSW, Australia
[5] Univ Sydney, Fac Med & Hlth, Sch Med Sci, Sydney, NSW, Australia
[6] Univ Sydney, Dept Pathol, Vasc Immunol Unit, Sydney, NSW, Australia
[7] Univ Sydney, Sch Comp Sci, Sydney, NSW, Australia
[8] Univ Sydney, Fac Med & Hlth, Sch Med Sci, Viral Immunopathol Lab,Discipline Pathol, Sydney, NSW, Australia
[9] Univ Sydney, Westmead Initiat, Sydney, NSW, Australia
[10] Univ Sydney, Sydney Nano, Sydney, NSW, Australia
基金
澳大利亚国家健康与医学研究理事会; 英国医学研究理事会;
关键词
clustering; computational analysis; dimensionality reduction; FlowSOM; high‐ dimensional cytometry; mass cytometry; spectral cytometry; t‐ SNE; UMAP; MASS CYTOMETRY; FLOW; REVEALS; IMMUNE; VISUALIZATION;
D O I
10.1002/cyto.a.24350
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
As the size and complexity of high-dimensional (HD) cytometry data continue to expand, comprehensive, scalable, and methodical computational analysis approaches are essential. Yet, contemporary clustering and dimensionality reduction tools alone are insufficient to analyze or reproduce analyses across large numbers of samples, batches, or experiments. Moreover, approaches that allow for the integration of data across batches or experiments are not well incorporated into computational toolkits to allow for streamlined workflows. Here we present Spectre, an R package that enables comprehensive end-to-end integration and analysis of HD cytometry data from different batches or experiments. Spectre streamlines the analytical stages of raw data pre-processing, batch alignment, data integration, clustering, dimensionality reduction, visualization, and population labelling, as well as quantitative and statistical analysis. Critically, the fundamental data structures used within Spectre, along with the implementation of machine learning classifiers, allow for the scalable analysis of very large HD datasets, generated by flow cytometry, mass cytometry, or spectral cytometry. Using open and flexible data structures, Spectre can also be used to analyze data generated by single-cell RNA sequencing or HD imaging technologies, such as Imaging Mass Cytometry. The simple, clear, and modular design of analysis workflows allow these tools to be used by bioinformaticians and laboratory scientists alike. Spectre is available as an R package or Docker container. R code is available on Github ().
引用
收藏
页码:237 / 253
页数:17
相关论文
共 62 条
  • [1] Orchestrating single-cell analysis with Bioconductor
    Amezquita, Robert A.
    Lun, Aaron T. L.
    Becht, Etienne
    Carey, Vince J.
    Carpp, Lindsay N.
    Geistlinger, Ludwig
    Marini, Federico
    Rue-Albrecht, Kevin
    Risso, Davide
    Soneson, Charlotte
    Waldron, Levi
    Pages, Herve
    Smith, Mike L.
    Huber, Wolfgang
    Morgan, Martin
    Gottardo, Raphael
    Hicks, Stephanie C.
    [J]. NATURE METHODS, 2020, 17 (02) : 137 - 145
  • [2] Ashhurst TM, 2019, METHODS MOL BIOL, V1989, P159, DOI 10.1007/978-1-4939-9454-0_12
  • [3] Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets
    Belkina, Anna C.
    Ciccolella, Christopher O.
    Anno, Rina
    Halpert, Richard
    Spidlen, Josef
    Snyder-Cappione, Jennifer E.
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [4] BELSON WA, 1959, ROY STAT SOC C-APP, V8, P65
  • [5] Single-Cell Trajectory Detection Uncovers Progression and Regulatory Coordination in Human B Cell Development
    Bendall, Sean C.
    Davis, Kara L.
    Amir, El-ad David
    Tadmor, Michelle D.
    Simonds, Erin F.
    Chen, Tiffany J.
    Shenfeld, Daniel K.
    Nolan, Garry P.
    Pe'er, Dana
    [J]. CELL, 2014, 157 (03) : 714 - 725
  • [6] Single-Cell Mass Cytometry of Differential Immune and Drug Responses Across a Human Hematopoietic Continuum
    Bendall, Sean C.
    Simonds, Erin F.
    Qiu, Peng
    Amir, El-ad D.
    Krutzik, Peter O.
    Finck, Rachel
    Bruggner, Robert V.
    Melamed, Rachel
    Trejo, Angelica
    Ornatsky, Olga I.
    Balderas, Robert S.
    Plevritis, Sylvia K.
    Sachs, Karen
    Pe'er, Dana
    Tanner, Scott D.
    Nolan, Garry P.
    [J]. SCIENCE, 2011, 332 (6030) : 687 - 696
  • [7] Blighe K., 2020, EnhancedVolcano: Publication-ready volcano plots with enhanced colouring and labeling
  • [8] Improving the Rigor and Reproducibility of Flow Cytometry-Based Clinical Research and Trials Through Automated Data Analysis
    Brinkman, Ryan R.
    [J]. CYTOMETRY PART A, 2020, 97 (02) : 107 - 112
  • [9] Automated identification of stratifying signatures in cellular subpopulations
    Bruggner, Robert V.
    Bodenmiller, Bernd
    Dill, David L.
    Tibshirani, Robert J.
    Nolan, Garry P.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (26) : E2770 - E2777
  • [10] Integrating single-cell transcriptomic data across different conditions, technologies, and species
    Butler, Andrew
    Hoffman, Paul
    Smibert, Peter
    Papalexi, Efthymia
    Satija, Rahul
    [J]. NATURE BIOTECHNOLOGY, 2018, 36 (05) : 411 - +