Congruences for Catalan Larcombe French numbers

被引:6
作者
Ji, Xiao-Juan [1 ]
Sun, Zhi-Hong [2 ]
机构
[1] Soochow Univ, Sch Math Sci, Suzhou 215006, Jiangsu, Peoples R China
[2] Huaiyin Normal Univ, Sch Math Sci, Huaian 223001, Jiangsu, Peoples R China
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2017年 / 90卷 / 3-4期
基金
中国国家自然科学基金;
关键词
congruence; Catalan-Larcombe-French number;
D O I
10.5486/PMD.2017.7598
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let {P-n}be the Catalan-Larcombe French numbers given by P-0 = 1, P-1 = 8 and n(2) P-n = 8(3n(2) - 3n+1)Pn-1-128(n-1)(2) Pn-2 (n >= 2), and let S-n = P-n/2(n). In this paper, we deduce congruences for S-np, Snp+1 (mod p(3)), Smpr-1 (mod p(r)) and S-mpr+1 (mod p(2r)), where p is an odd prime and m, n, r are positive integers.
引用
收藏
页码:387 / 406
页数:20
相关论文
共 13 条
[1]  
[Anonymous], INDIAN J MATH
[2]  
Catalan E., 1887, REND CIRC MAT PALERM, V1, P190
[3]   Supercongruences for the Catalan-Larcombe-French numbers [J].
Jarvis, Frazer ;
Verrill, Helena A. .
RAMANUJAN JOURNAL, 2010, 22 (02) :171-186
[4]  
Larcombe P. G., 2004, Congr. Numer., V166, P161
[5]  
Larcombe P. G., 2000, Congr. Numer., V143, P33
[6]  
Magnus Wilhelm, 1966, Die Grundlehren der mathematischen Wissenschaften, V52
[7]  
Mestrovic R., 1878, ARXIV14093820
[8]   A SUPERCONGRUENCE FOR GENERALIZED DOMB NUMBERS [J].
Osburn, Robert ;
Sahu, Brundaban .
FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2013, 48 (01) :29-36
[9]   Identities and congruences for Catalan-Larcombe-French numbers [J].
Sun, Zhi-Hong .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (04) :835-851
[10]   SUPERCONGRUENCES INVOLVING EULER POLYNOMIALS [J].
Sun, Zhi-Hong .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (08) :3295-3308