A feasibility study for controlling self-organized production of plasmonic enhancement interfaces for solar cells

被引:16
作者
Borra, Mona Zolfaghari [1 ,4 ]
Gullu, Seda Kayra [2 ,3 ,4 ]
Es, Firat [1 ,4 ]
Demircioglu, Olgu [1 ,4 ]
Gunoven, Mete [1 ,4 ]
Turan, Rasit [1 ,2 ,4 ]
Bek, Alpan [1 ,2 ,4 ]
机构
[1] Middle E Tech Univ, Grad Sch Nat & Appl Sci, Micro & Nanotechnol Program, TR-06800 Ankara, Turkey
[2] Middle E Tech Univ, Dept Phys, TR-06800 Ankara, Turkey
[3] Atilim Univ, Elect & Elect Engn Dept, Phys Unit, TR-06836 Ankara, Turkey
[4] Middle E Tech Univ, Ctr Solar Energy Res & Applicat, TR-06800 Ankara, Turkey
关键词
Plasmonics; Solar cells; Dewetting; Silver nanoparticles; AG NANOPARTICLES; FILMS;
D O I
10.1016/j.apsusc.2013.12.088
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The decoration of metal nanoparticles (MNPs) by the self-organized mechanism of dewetting is utilized as a suitable method for plasmonic interface integration to large area full-scale solar cell (SC) devices. Reflection measurements are performed on both flat and textured silicon (Si) SCs in order to investigate the local plasmonic resonances of the MNPs. The effects of particle size and thickness of silicon nitride (Si3N4)anti-reflection coating layer are investigated by reflection measurements and the shift of plasmon resonance peak position. It is found that surface roughness, annealing time, annealing temperature, and varying Si3N4 thickness can be used as mechanisms to control the size distribution, shape of the resultant nano-islands, and SC efficiency. The findings on the most suitable nanoparticle system production parameters by this method, depends on the applied substrate properties which are expected to guide further applications of plasmonic interfaces and also to the other kinds of device structures in the ultimate quest for attaining affordable high efficiency SCs. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:43 / 50
页数:8
相关论文
共 20 条
[1]  
[Anonymous], 1897, Z. f.ur. Physikalische Chem. Bd, DOI DOI 10.1515/ZPCH-1897-2233
[2]   Multiscale Transparent Electrode Architecture for Efficient Light Management and Carrier Collection in Solar Cells [J].
Boccard, Mathieu ;
Battaglia, Corsin ;
Haenni, Simon ;
Soederstroem, Karin ;
Escarre, Jordi ;
Nicolay, Sylvain ;
Meillaud, Fanny ;
Despeisse, Matthieu ;
Ballif, Christophe .
NANO LETTERS, 2012, 12 (03) :1344-1348
[3]   Design principles for particle plasmon enhanced solar cells [J].
Catchpole, K. R. ;
Polman, A. .
APPLIED PHYSICS LETTERS, 2008, 93 (19)
[4]   Plasmonic solar cells [J].
Catchpole, K.R. ;
Polman, A. .
Optics Express, 2008, 16 (26) :21793-21800
[5]  
Emmanouil F., 2005, THESIS MIT MASSACHUS
[6]   Understanding the plasmonic properties of dewetting formed Ag nanoparticles for large area solar cell applications [J].
Gunendi, M. Can ;
Tanyeli, Irem ;
Akguc, Gursoy B. ;
Bek, Alpan ;
Turan, Rasit ;
Gulseren, Oguz .
OPTICS EXPRESS, 2013, 21 (15) :18344-18353
[7]  
Hairen T., 2012, NANO LETT, V12, P4070
[8]  
Hitoshi S., 2011, APPL PHYS LETT, V98
[9]   A study of hillock formation on Al-Ta alloy films for interconnections of TFT-LCDs [J].
Iwamura, E ;
Ohnishi, T ;
Yoshikawa, K .
THIN SOLID FILMS, 1995, 270 (1-2) :450-455
[10]   Laser Edge Isolation for High-efficiency Crystalline Silicon Solar Cells [J].
Kyeong, Dohyeon ;
Gunasekaran, Muniappan ;
Kim, Kyunghae ;
Kim, Heejae ;
Kwon, Taeyoung ;
Moon, Inyong ;
Kim, Youngkuk ;
Han, Kyumin ;
Yi, Junsin .
JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2009, 55 (01) :124-128