Conductivity engineering of graphene by defect formation

被引:84
作者
Jafri, S. H. M. [1 ]
Carva, K. [2 ,3 ]
Widenkvist, E. [4 ]
Blom, T. [1 ]
Sanyal, B. [2 ]
Fransson, J. [2 ]
Eriksson, O. [2 ]
Jansson, U. [4 ]
Grennberg, H. [5 ]
Karis, O. [2 ]
Quinlan, R. A. [6 ]
Holloway, B. C. [7 ]
Leifer, K. [1 ]
机构
[1] Uppsala Univ, Dept Engn Sci, Angstrom Lab, S-75121 Uppsala, Sweden
[2] Charles Univ Prague, Fac Math & Phys, Dept Condensed Matter Phys, CZ-12116 Prague, Czech Republic
[3] Uppsala Univ, Dept Phys & Mat Sci, Angstrom Lab, S-75121 Uppsala, Sweden
[4] Uppsala Univ, Dept Chem Mat, Angstrom Lab, S-75121 Uppsala, Sweden
[5] Uppsala Univ, Dept Biochem & Organ Chem, S-75123 Uppsala, Sweden
[6] Coll William & Mary, Dept Appl Sci, Williamsburg, VA 23187 USA
[7] Luna Innovat Inc, NanoWorks Div, Danville, VA 24541 USA
关键词
GAS; GRAPHITE; ALLOYS;
D O I
10.1088/0022-3727/43/4/045404
中图分类号
O59 [应用物理学];
学科分类号
摘要
Transport measurements have revealed several exotic electronic properties of graphene. The possibility to influence the electronic structure and hence control the conductivity by adsorption or doping with adatoms is crucial in view of electronics applications. Here, we show that in contrast to expectation, the conductivity of graphene increases with increasing concentration of vacancy defects, by more than one order of magnitude. We obtain a pronounced enhancement of the conductivity after insertion of defects by both quantum mechanical transport calculations as well as experimental studies of carbon nano-sheets. Our finding is attributed to the defect induced mid-gap states, which create a region exhibiting metallic behaviour around the vacancy defects. The modification of the conductivity of graphene by the implementation of stable defects is crucial for the creation of electronic junctions in graphene-based electronics devices.
引用
收藏
页数:8
相关论文
共 29 条
  • [1] Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect
    Castro, Eduardo V.
    Novoselov, K. S.
    Morozov, S. V.
    Peres, N. M. R.
    Dos Santos, J. M. B. Lopes
    Nilsson, Johan
    Guinea, F.
    Geim, A. K.
    Castro Neto, A. H.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (21)
  • [2] Defects, quasibound states, and quantum conductance in metallic carbon nanotubes
    Choi, HJ
    Ihm, J
    Louie, SG
    Cohen, ML
    [J]. PHYSICAL REVIEW LETTERS, 2000, 84 (13) : 2917 - 2920
  • [3] Defect formation in graphene nanosheets by acid treatment: an x-ray absorption spectroscopy and density functional theory study
    Coleman, V. A.
    Knut, R.
    Karis, O.
    Grennberg, H.
    Jansson, U.
    Quinlan, R.
    Holloway, B. C.
    Sanyal, B.
    Eriksson, O.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (06)
  • [4] Structural characterization of carbon nanosheets via x-ray scattering
    French, BL
    Wang, JJ
    Zhu, MY
    Holloway, BC
    [J]. JOURNAL OF APPLIED PHYSICS, 2005, 97 (11)
  • [5] Direct evidence for atomic defects in graphene layers
    Hashimoto, A
    Suenaga, K
    Gloter, A
    Urita, K
    Iijima, S
    [J]. NATURE, 2004, 430 (7002) : 870 - 873
  • [6] INHOMOGENEOUS ELECTRON-GAS
    RAJAGOPAL, AK
    CALLAWAY, J
    [J]. PHYSICAL REVIEW B, 1973, 7 (05) : 1912 - 1919
  • [7] Field-effect transistor with deposited graphite thin film
    Inokawa, Hiroshi
    Nagase, Masao
    Hirono, Shigeru
    Goto, Touichiro
    Yamaguchi, Hiroshi
    Torimitsu, Keiichi
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2007, 46 (4B): : 2615 - 2617
  • [8] Chiral tunnelling and the Klein paradox in graphene
    Katsnelson, M. I.
    Novoselov, K. S.
    Geim, A. K.
    [J]. NATURE PHYSICS, 2006, 2 (09) : 620 - 625
  • [9] Minimal conductivity in bilayer graphene
    Katsnelson, M. I.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2006, 52 (02) : 151 - 153
  • [10] Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
    Kresse, G
    Furthmuller, J
    [J]. PHYSICAL REVIEW B, 1996, 54 (16): : 11169 - 11186