Comprehensive Lyapunov functions for linear switching systems

被引:3
|
作者
Protasov, Vladimir Yu. [1 ,2 ]
机构
[1] Univ Aquila, Laquila, Italy
[2] Moscow MV Lomonosov State Univ, Dept Mech & Math, Moscow, Russia
关键词
Linear switching system; Trajectories; Asymptotic growth; Lyapunov function; Normal form; Lyapunov exponent; MARGINAL INSTABILITY; SPECTRAL-RADIUS; CONSTRUCTION; COMPUTATION;
D O I
10.1016/j.automatica.2019.108526
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For a linear dynamical switching system, we analyse maximal asymptotic growth of trajectories depending on the initial point. Both discrete and continuous time systems in R-d are considered. We prove the existence of a Lyapunov norm in Rd with the following property: for every invariant linear subspace L subset of R-d of the system, the restriction of the norm on L provides a tight upper bound for the growth of trajectories on L. For this, we introduce the concept of the spectral normal form of a family of matrices. Properties of the comprehensive Lyapunov norms are analysed and methods of their construction are discussed. (C) 2019 Published by Elsevier Ltd.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] On the stability and existence of common Lyapunov functions for stable linear switching systems
    Shorten, Robert N.
    Narendra, Kumpati S.
    Proceedings of the IEEE Conference on Decision and Control, 1998, 4 : 3723 - 3724
  • [2] On the stability and existence of common Lyapunov functions for stable linear switching systems
    Shorten, RN
    Narendra, KS
    PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1998, : 3723 - 3724
  • [3] Stability of Switching Linear Uncertain Systems via switching time-varying Lyapunov functions
    Zheng, Huimin
    Sun, Yuangong
    2022 22ND INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2022), 2022, : 899 - 904
  • [4] Max-type copositive Lyapunov functions for switching positive linear systems
    Pastravanu, Octavian C.
    Matcovschi, Mihaela-Hanako
    AUTOMATICA, 2014, 50 (12) : 3323 - 3327
  • [5] Constrained switching stabilization of linear uncertain switched systems using piecewise linear Lyapunov functions
    Yfoulis, Christos A.
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2010, 32 (05) : 529 - 566
  • [6] QUADRATIC LYAPUNOV FUNCTIONS FOR LINEAR SYSTEMS
    VENKATES.YV
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1969, 66 : 115 - &
  • [7] Lyapunov Functions for Linear Hyperbolic Systems
    Atamas, Ivan
    Dashkovskiy, Sergey
    Slynko, Vitalii
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (11) : 6496 - 6508
  • [8] Implicit Lyapunov functions and isochrones of linear systems
    Adamy, J
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (06) : 874 - 879
  • [9] Conjugate Lyapunov functions for saturated linear systems
    Hu, TS
    Goebel, R
    Teel, AR
    Lin, ZL
    AUTOMATICA, 2005, 41 (11) : 1949 - 1956
  • [10] On the construction of diagonal Lyapunov functions for linear systems
    Pastravanu, Octavian
    Matcovschi, Mihaela-Hanako
    ISSCS 2007: INTERNATIONAL SYMPOSIUM ON SIGNALS, CIRCUITS AND SYSTEMS, VOLS 1 AND 2, 2007, : 505 - +