Right core inverses of a product and a companion matrix

被引:5
作者
Chen, Xiaofeng [1 ]
Chen, Jianlong [1 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 210096, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Right core inverse; core inverse; triangular matrix; companion matrix; 2; x; matrix; GENERALIZED INVERSES; RINGS;
D O I
10.1080/03081087.2019.1664398
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, characterizations of right core inverse are given by one-sided invertibility. The necessary and sufficient conditions, which guarantee that paq has right core inverses, are investigated. Furthermore, characterizations of right core inverses of triangular matrices, matrices and a companion matrix are considered.
引用
收藏
页码:2245 / 2263
页数:19
相关论文
共 18 条
  • [1] Core inverse of matrices
    Baksalary, Oskar Maria
    Trenkler, Goetz
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2010, 58 (06) : 681 - 697
  • [2] FURTHER RESULTS ON GENERALIZED INVERSES IN RINGS WITH INVOLUTION
    Castro-Gonzalez, N.
    Chen, Jianlong
    Wang, Long
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2015, 30 : 118 - 134
  • [3] Chen J. L., 1996, NE MATH J, V12, P431
  • [4] Characterizations and Representations of Core and Dual Core Inverses
    Chen, Jianlong
    Zhu, Huihui
    Patricio, Pedro
    Zhang, Yulin
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2017, 60 (02): : 269 - 282
  • [5] Left and right generalized inverses
    Drazin, Michael P.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 510 : 64 - 78
  • [6] A class of outer generalized inverses
    Drazin, Michael P.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (07) : 1909 - 1923
  • [7] BLOCK GENERALIZED INVERSES
    HARTWIG, RE
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1976, 61 (03) : 197 - 251
  • [8] Ke YY, 2019, B MALAYS MATH SCI SO, V42, P51, DOI 10.1007/s40840-017-0464-1
  • [9] LAM TY, 2001, 1 COURSE NONCOMMUTAT, V131
  • [10] The core invertibility of a companion matrix and a Hankel matrix
    Li, Tingting
    Chen, Jianlong
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (03) : 550 - 562