Automatic microchannel detection using deep learning in intravascular optical coherence tomography images

被引:2
作者
Lee, Juhwan [1 ]
Kim, Justin N. [1 ]
Pereira, Gabriel T. R. [2 ]
Gharaibeh, Yazan [1 ]
Kolluru, Chaitanya [1 ]
Zimin, Vladislav N. [2 ]
Dallan, Luis A. P. [2 ]
Motairek, Issam K. [2 ]
Hoori, Ammar [1 ]
Guagliumi, Giulio [3 ]
Bezerra, Hiram G. [4 ]
Wilson, David L. [1 ,5 ]
机构
[1] Case Western Reserve Univ, Dept Biomed Engn, Cleveland, OH 44106 USA
[2] Univ Hosp Cleveland, Harrington Heart & Vasc Inst, Med Ctr, Cardiovasc Imaging Core Lab, Cleveland, OH 44106 USA
[3] Osped Papa Giovanni XXIII, Cardiovasc Dept, Bergamo, Italy
[4] Univ S Florida, Intervent Cardiol Ctr, Inst Heart & Vasc, Tampa, FL 33606 USA
[5] Case Western Reserve Univ, Dept Radiol, Cleveland, OH 44106 USA
来源
MEDICAL IMAGING 2022: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING | 2022年 / 12034卷
关键词
Intravascular optical coherence tomography; microchannel; deep learning; segmentation; classification;
D O I
10.1117/12.2612697
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Microchannel formation is known to be a significant marker of plaque vulnerability, plaque rupture, and intraplaque hemorrhage, which are responsible for plaque progression. We developed a fully-automated method for detecting microchannels in intravascular optical coherence tomography (IVOCT) images using deep learning. A total of 3,075 IVOCT image frames across 41 patients having 62 microchannel segments were analyzed. Microchannel was manually annotated by expert cardiologists, according to previously established criteria. In order to improve segmentation performance, pre-processing including guidewire detection/removal, lumen segmentation, pixel-shifting, and noise filtering was applied to the raw (r,theta) IVOCT image. We used the DeepLab-v3 plus deep learning model with the Xception backbone network for identifying microchannel candidates. After microchannel candidate detection, each candidate was classified as either microchannel or no-microchannel using a convolutional neural network (CNN) classification model. Our method provided excellent segmentation of microchannel with a Dice coefficient of 0.811, sensitivity of 92.4%, and specificity of 99.9%. We found that pre-processing and data augmentation were very important to improve results. In addition, a CNN classification step was also helpful to rule out false positives. Furthermore, automated analysis missed only 3% of frames having microchannels and showed no false positives. Our method has great potential to enable highly automated, objective, repeatable, and comprehensive evaluations of vulnerable plaques and treatments. We believe that this method is promising for both research and clinical applications.
引用
收藏
页数:8
相关论文
共 18 条
[1]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[2]   Xception: Deep Learning with Depthwise Separable Convolutions [J].
Chollet, Francois .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1800-1807
[3]   Optical Coherence Tomographic Evaluation of Transplant Coronary Artery Vasculopathy With Correlation to Cellular Rejection [J].
Dong, Liang ;
Maehara, Akiko ;
Nazif, Tamim M. ;
Pollack, Ari T. ;
Saito, Shigeo ;
Rabbani, LeRoy E. ;
Apfelbaum, Mark A. ;
Dalton, Kate ;
Moses, Jeffrey W. ;
Jorde, Ulrich P. ;
Xu, Ke ;
Mintz, Gary S. ;
Mancini, Donna M. ;
Weisz, Giora .
CIRCULATION-CARDIOVASCULAR INTERVENTIONS, 2014, 7 (02) :199-206
[4]   Coronary calcification segmentation in intravascular OCT images using deep learning: application to calcification scoring [J].
Gharaibeh, Yazan ;
Prabhu, David ;
Kolluru, Chaitanya ;
Lee, Juhwan ;
Zimin, Vladislav ;
Bezerra, Hiram ;
Wilson, David .
JOURNAL OF MEDICAL IMAGING, 2019, 6 (04)
[5]   Temporal course of vascular healing and neoatherosclerosis after implantation of durable- or biodegradable-polymer drug-eluting stents [J].
Guagliumi, Giulio ;
Shimamura, Kunihiro ;
Sirbu, Vasite ;
Garbo, Roberto ;
Boccuzzi, Giacomo ;
Vassileva, Angelina ;
Valsecchi, Orazio ;
Fiocca, Luigi ;
Canova, Paolo ;
Colombo, Francesco ;
Pereira, Gabriel Tensot Rodriguez ;
Nakamura, Daisuke ;
Attizzani, Guitherme F. ;
Cereda, Alberto ;
Satogami, Keisuke ;
De Luca, Eonardo ;
Saia, Francesco ;
Capodanno, Davide .
EUROPEAN HEART JOURNAL, 2018, 39 (26) :2448-+
[6]  
Kingma DP, 2014, ADV NEUR IN, V27
[7]   Relation of Microchannel Structure Identified by Optical Coherence Tomography to Plaque Vulnerability in Patients With Coronary Artery Disease [J].
Kitabata, Hironori ;
Tanaka, Atsushi ;
Kubo, Takashi ;
Takarada, Shigeho ;
Kashiwagi, Manabu ;
Tsujioka, Hiroto ;
Ikejima, Hideyuki ;
Kuroi, Akio ;
Kataiwa, Hideaki ;
Ishibashi, Kohei ;
Komukai, Kenichi ;
Tanimoto, Takashi ;
Ino, Yasushi ;
Hirata, Kumiko ;
Nakamura, Nobuo ;
Mizukoshi, Masato ;
Imanishi, Toshio ;
Akasaka, Takashi .
AMERICAN JOURNAL OF CARDIOLOGY, 2010, 105 (12) :1673-1678
[8]  
Kolluru C, 2021, IEEE ACCESS, V9, P37273, DOI [10.1109/ACCESS.2021.3058890, 10.1109/access.2021.3058890]
[9]   Deep neural networks for A-line-based plaque classification in coronary intravascular optical coherence tomography images [J].
Kolluru, Chaitanya ;
Prabhu, David ;
Gharaibeh, Yazan ;
Bezerra, Hiram ;
Guagliumi, Giulio ;
Wilson, David .
JOURNAL OF MEDICAL IMAGING, 2018, 5 (04)
[10]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90