Ion transport controlled by nanoparticle-functionalized membranes

被引:55
作者
Barry, Edward [1 ]
McBride, Sean P. [2 ]
Jaeger, Heinrich M. [2 ,3 ]
Lin, Xiao-Min [1 ]
机构
[1] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA
[2] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
[3] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
GOLD NANOTUBULE MEMBRANES; NANOFILTRATION MEMBRANES; REVERSE-OSMOSIS; MECHANICAL-PROPERTIES; SURFACE-CHARGE; PORE STRUCTURE; SELECTIVITY; MONOLAYERS; NANOCRYSTALS; DESALINATION;
D O I
10.1038/ncomms6847
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
From proton exchange membranes in fuel cells to ion channels in biological membranes, the well-specified control of ionic interactions in confined geometries profoundly influences the transport and selectivity of porous materials. Here we outline a versatile new approach to control a membrane's electrostatic interactions with ions by depositing ligand-coated nanoparticles around the pore entrances. Leveraging the flexibility and control by which ligated nanoparticles can be synthesized, we demonstrate how ligand terminal groups such as methyl, carboxyl and amine can be used to tune the membrane charge density and control ion transport. Further functionality, exploiting the ligands as binding sites, is demonstrated for sulfonate groups resulting in an enhancement of the membrane charge density. We then extend these results to smaller dimensions by systematically varying the underlying pore diameter. As a whole, these results outline a previously unexplored method for the nanoparticle functionalization of membranes using ligated nanoparticles to control ion transport.
引用
收藏
页数:8
相关论文
共 52 条
[1]   pH Tuning of DNA Translocation Time through Organically Functionalized Nanopores [J].
Anderson, Brett N. ;
Muthukumar, Murugappan ;
Meller, Amit .
ACS NANO, 2013, 7 (02) :1408-1414
[2]   Energetics of ion conduction through the K+ channel [J].
Bernèche, S ;
Roux, B .
NATURE, 2001, 414 (6859) :73-77
[3]   Characterisation and prediction of separation performance of nanofiltration membranes [J].
Bowen, WR ;
Mukhtar, H .
JOURNAL OF MEMBRANE SCIENCE, 1996, 112 (02) :263-274
[4]   Ion Transport Through Polyelectrolyte Multilayers [J].
Carregal-Romero, Susana ;
Rinklin, Philipp ;
Schulze, Susanne ;
Schaefer, Martin ;
Ott, Andrea ;
Huehn, Dominik ;
Yu, Xiang ;
Wolfrum, Bernhard ;
Weitzel, Karl-Michael ;
Parak, Wolfgang J. .
MACROMOLECULAR RAPID COMMUNICATIONS, 2013, 34 (23-24) :1820-1826
[5]  
Cheng WL, 2009, NAT MATER, V8, P519, DOI [10.1038/NMAT2440, 10.1038/nmat2440]
[6]   Relating nanofiltration membrane performance to membrane charge (electrokinetic) characteristics [J].
Childress, AE ;
Elimelech, M .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2000, 34 (17) :3710-3716
[7]   The theory of membrane equilibria [J].
Donnan, FG .
CHEMICAL REVIEWS, 1924, 1 (01) :73-90
[8]   A very large two-dimensional superlattice domain of monodisperse gold nanoparticles by self-assembly [J].
Eah, Sang-Kee .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (42) :16866-16868
[9]   The Future of Seawater Desalination: Energy, Technology, and the Environment [J].
Elimelech, Menachem ;
Phillip, William A. .
SCIENCE, 2011, 333 (6043) :712-717
[10]   Functionalized monolayers on ordered mesoporous supports [J].
Feng, X ;
Fryxell, GE ;
Wang, LQ ;
Kim, AY ;
Liu, J ;
Kemner, KM .
SCIENCE, 1997, 276 (5314) :923-926