Chemoenzymatic synthesis of neoglycoproteins driven by the assessment of protein surface reactivity

被引:27
作者
Bavaro, T. [1 ,2 ]
Filice, M. [3 ]
Temporini, C. [1 ,2 ]
Tengattini, S. [1 ,2 ]
Serra, I. [1 ,2 ]
Morelli, C. F. [4 ,5 ]
Massolini, G. [1 ,2 ]
Terreni, M. [1 ,2 ]
机构
[1] Univ Pavia, Dept Drug Sci, I-27100 Pavia, Italy
[2] Univ Pavia, Italian Biocatalysis Ctr, I-27100 Pavia, Italy
[3] ICP CSIC, Inst Catalisis, Dept Biocatalisis, Madrid 28049, Spain
[4] Univ Milan, Dept Chem, I-20133 Milan, Italy
[5] Univ Milan, Italian Biocatalysis Ctr, I-20133 Milan, Italy
关键词
OLIGOSACCHARIDE; GLYCOSYLATION;
D O I
10.1039/c4ra11131a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper a series of 2-iminomethoxyethyl mannose-based mono-and disaccharides have been synthesized by a chemoenzymatic approach and used in coupling reactions with epsilon-amino groups of lysine residues in a model protein (ribonuclease A, RNase A) to give semisynthetic neoglycoconjugates. In order to study the influence of structure of the glycans on the conjugation outcomes, an accurate characterization of the prepared neoglycoproteins was performed by a combination of ESI-MS and LC-MS analytical methods. The analyses of the chymotryptic digests of the all neoglycoconjugates revealed six Lys-glycosylation sites with a the following order of lysine reactivity: Lys 1 >> Lys 91 congruent to Lys 31 > Lys 61 congruent to Lys 66. A computational analysis of the reactivity of each lysine residue has been also carried out considering several parameters (amino acids surface exposure and pK(a), protein flexibility). The in silico evaluation seems to confirm the order in lysine reactivity resulting from proteomic analysis.
引用
收藏
页码:56455 / 56465
页数:11
相关论文
共 28 条
[21]   Glycoviruses: Chemical glycosylation retargets adenoviral gene transfer [J].
Pearce, OMT ;
Fisher, KD ;
Humphries, J ;
Seymour, LW ;
Smith, A ;
Davis, BG .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (07) :1057-1061
[22]  
Sandra K, 2013, LC GC EUR, P10
[23]   Improved Treatment of Ligands and Coupling Effects in Empirical Calculation and Rationalization of pKa Values [J].
Sondergaard, Chresten R. ;
Olsson, Mats H. M. ;
Rostkowski, Michal ;
Jensen, Jan H. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2011, 7 (07) :2284-2295
[24]   Intact protein analysis in the biopharmaceutical field [J].
Staub, Aline ;
Guillarme, Davy ;
Schappler, Julie ;
Veuthey, Jean-Luc ;
Rudaz, Serge .
JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 2011, 55 (04) :810-822
[25]   Pronase-immobilized enzyme reactor:: An approach for automation in glycoprotein analysis by LC/LC-ESI/MSn [J].
Temporini, Caterina ;
Perani, Eleonora ;
Calleri, Enrica ;
Dolcini, Lorenzo ;
Lubda, Dieter ;
Caccialanza, Gabriele ;
Massolini, Gabriella .
ANALYTICAL CHEMISTRY, 2007, 79 (01) :355-363
[26]   Characterization and Study of the Orientation of Immobilized Enzymes by Tryptic Digestion and HPLC-MS: Design of an Efficient Catalyst for the Synthesis of Cephalosporins [J].
Temporini, Caterina ;
Bonomi, Paolo ;
Serra, Immacolata ;
Tagliani, Auro ;
Bavaro, Teodora ;
Ubiali, Daniela ;
Massolini, Gabriella ;
Terreni, Marco .
BIOMACROMOLECULES, 2010, 11 (06) :1623-1632
[27]  
Wang Z., 2010, COMPREHENSIVE ORGANI, P3123
[28]   From Synthesis to Biologics: Preclinical Data on a Chemistry Derived Anticancer Vaccine [J].
Zhu, Jianglong ;
Wan, Qian ;
Lee, Dongjoo ;
Yang, Guangbin ;
Spassova, Maria K. ;
Ouerfelli, Ouathek ;
Ragupathi, Govind ;
Damani, Payal ;
Livingston, Philip O. ;
Danishefsky, Samuel J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (26) :9298-9303