Light-Responsive Biodegradable Nanomedicine Overcomes Multidrug Resistance via NO-Enhanced Chemosensitization

被引:159
作者
Fan, Jing [1 ,2 ,4 ]
He, Qianjun [3 ]
Liu, Yi [2 ]
Zhang, Fuwu [2 ]
Yang, Xiangyu [1 ,2 ]
Wang, Zhe [2 ]
Lu, Nan [2 ]
Fan, Wenpei [2 ,3 ]
Lin, Lisen [2 ]
Niu, Gang [2 ]
He, Nongyue [1 ]
Song, Jibin [2 ]
Chen, Xiaoyuan [2 ]
机构
[1] Southeast Univ, State Key Lab Bioelect, Nanjing 210096, Jiangsu, Peoples R China
[2] NIBIB, Lab Mol Imaging & Nanomed LOMIN, NIH, Bethesda, MD 20892 USA
[3] Shenzhen Univ, Sch Med, Dept Biomed Engn, Guangdong Key Lab Biomed Measurements & Ultrasoun, Shenzhen 518060, Guangdong, Peoples R China
[4] Guangxi Med Univ, Biol Target Diag & Treatment Ctr, Nanning 530021, Guangxi, Peoples R China
基金
美国国家卫生研究院;
关键词
nitric oxide (NO); light-responsive; mPEG-PLGA; chemotherapy; multidrug resistance (MDR); NITRIC-OXIDE; TUMOR HYPOXIA; CANCER-CELLS; GENE-EXPRESSION; MDR1; GENE; PROTEIN; DOXORUBICIN; CARCINOMA; ANGIOGENESIS; CISPLATIN;
D O I
10.1021/acsami.6b03737
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Multidrug resistance (MDR) is responsible for the relatively low effectiveness of chemotherapeutics. Herein, a nitric oxide (NO) gas-enhanced chemosensitization strategy is proposed to overcome MDR by construction of a biodegradable nanomedicine formula based on BNN6/DOX coloaded monomethoxy(polyethylene glycol)-poly(lactic-co-glycolic acid) (mPEG-PLGA). On one hand, the nanomedicine features high biocompatibility due to the high density of PEG and biodegradable PLGA. On the other hand, the nanoformula exhibits excellent stability under physiological conditions but exhibits stimuli-responsive decomposition of BNN6 for NO gas release upon ultraviolet-visible irradiation. More importantly, after NO release is triggered, gas molecules are generated that break the nanoparticle shell and lead to the release of doxorubicin. Furthermore, NO was demonstrated to reverse the MDR of tumor cells and enhance the chemosensitization for doxorubicin therapy.
引用
收藏
页码:13804 / 13811
页数:8
相关论文
共 32 条
[11]   Hypoxia: A key regulator of angiogenesis in cancer [J].
Liao, Debbie ;
Johnson, Randall S. .
CANCER AND METASTASIS REVIEWS, 2007, 26 (02) :281-290
[12]   Nitric oxide-mediated regulation of chemosensitivity in cancer cells [J].
Matthews, NE ;
Adams, MA ;
Maxwell, LR ;
Gofton, TE ;
Graham, CH .
JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2001, 93 (24) :1879-1885
[13]   Hypoxic regions exist in human prostate carcinoma [J].
Movsas, B ;
Chapman, JD ;
Horwitz, EM ;
Pinover, WH ;
Greenberg, RE ;
Hanlon, AL ;
Iyer, R ;
Hanks, GE .
UROLOGY, 1999, 53 (01) :11-18
[14]   Nitric oxide attenuates resistance to doxorubicin in three-dimensional aggregates of human breast carcinoma cells [J].
Muir, C. P. ;
Adams, M. A. ;
Graham, C. H. .
BREAST CANCER RESEARCH AND TREATMENT, 2006, 96 (02) :169-176
[15]   Breast cancer resistance protein (BCRP/ABCG2): its role in multidrug resistance and regulation of its gene expression [J].
Nakanishi, Takeo ;
Ross, Douglas D. .
CHINESE JOURNAL OF CANCER, 2012, 31 (02) :73-99
[16]   ROS stress in cancer cells and therapeutic implications [J].
Pelicano, H ;
Carney, D ;
Huang, P .
DRUG RESISTANCE UPDATES, 2004, 7 (02) :97-110
[17]   Cancer multidrug resistance [J].
Persidis, A .
NATURE BIOTECHNOLOGY, 1999, 17 (01) :94-95
[18]   Nitric oxide releasing acridone carboxamide derivatives as reverters of doxorubicin resistance in MCF7/Dx cancer cells [J].
Prasad, V. V. S. Rajendra ;
Reddy, G. Deepak ;
Kathmann, Ietje ;
Amareswararao, M. ;
Peters, G. J. .
BIOORGANIC CHEMISTRY, 2016, 64 :51-58
[19]   Dual roles of nitric oxide in the regulation of tumor cell response and resistance to photodynamic therapy [J].
Rapozzi, Valentina ;
Della Pietra, Emilia ;
Bonavida, Benjamin .
REDOX BIOLOGY, 2015, 6 :311-317
[20]  
Ren Z., 2016, J CELL MOL MED, P1