Surface-Consistent Sparse Multichannel Blind Deconvolution of Seismic Signals

被引:50
作者
Kazemi, Nasser [1 ]
Bongajum, Emmanuel [1 ,2 ]
Sacchi, Mauricio D. [1 ]
机构
[1] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada
[2] Schlumberger, Calgary, AB T2G 0P6, Canada
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2016年 / 54卷 / 06期
关键词
Blind deconvolution; nonminimum phase; optimization; sparsity; surface consistent;
D O I
10.1109/TGRS.2015.2513417
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We describe a method that allows for blind surface consistent estimation of the source and receiver wavelets of seismic signals. This is very relevant for surface-consistent deconvolution where current processing standards focus on the removal of the source and receiver effects under the minimum phase assumption. The proposed method, which is an extension of the Euclid deconvolution method, employs an iterative algorithm that simultaneously estimates the source and receiver wavelets that are consistent with the data. Unlike most deconvolution methods, the algorithm requires no prior phase assumptions. Another important feature of the algorithm is that we questioned the Gaussian density assumption of the reflectivity series and instead implemented a sparse regularizer to constrain the solution space of our desired reflectivity series. In other words, we assume that the reflectivity series can be cast as a sparse vector with few nonzero coefficients.
引用
收藏
页码:3200 / 3207
页数:8
相关论文
共 50 条
[21]   Bussgang blind deconvolution for impulsive signals [J].
Mathis, H ;
Douglas, SC .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2003, 51 (07) :1905-1915
[22]   Ultra-resolution surface-consistent full waveform inversion [J].
Colombo, Daniele ;
Sandoval-Curiel, Ernesto ;
Turkoglu, Ersan ;
Rovetta, Diego ;
Kontakis, Apostolos .
GEOPHYSICAL PROSPECTING, 2024, 72 (03) :1107-1132
[23]   RADAR AUTOFOCUS USING SPARSE BLIND DECONVOLUTION [J].
Mansour, Hassan ;
Liu, Dehong ;
Boufounos, Petros T. ;
Kamilov, Ulugbek S. .
2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, :1623-1627
[24]   Structured Local Optima in Sparse Blind Deconvolution [J].
Zhang, Yuqian ;
Kuo, Han-Wen ;
Wright, John .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (01) :419-452
[25]   Multichannel blind deconvolution for full Stokes image recovery [J].
Cunningham, Patrick B. ;
LeMaster, Daniel A. ;
Becker, David J. .
OPTICAL ENGINEERING, 2022, 61 (11)
[26]   Multichannel Blind Deconvolution using Low Rank Recovery [J].
Romberg, Justin ;
Tian, Ning ;
Sabra, Karim .
INDEPENDENT COMPONENT ANALYSES, COMPRESSIVE SAMPLING, WAVELETS, NEURAL NET, BIOSYSTEMS, AND NANOENGINEERING XI, 2013, 8750
[27]   Geometrical Structures of FIR Manifold and Multichannel Blind Deconvolution [J].
L.-Q. Zhang ;
A. Cichocki ;
S. Amari .
Journal of VLSI signal processing systems for signal, image and video technology, 2002, 31 :31-44
[28]   Sparse Blind Deconvolution: What Cannot Be Done [J].
Choudhary, Sunav ;
Mitra, Urbashi .
2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, :3002-3006
[29]   Geometrical structures of FIR manifold and multichannel blind deconvolution [J].
Zhang, LQ ;
Cichocki, A ;
Amari, S .
JOURNAL OF VLSI SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2002, 31 (01) :31-44
[30]   Identifiability of Multichannel Blind Deconvolution and Nonconvex Regularization Algorithm [J].
Xia, Yu ;
Li, Song .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (20) :5299-5312