Surface-Consistent Sparse Multichannel Blind Deconvolution of Seismic Signals

被引:49
|
作者
Kazemi, Nasser [1 ]
Bongajum, Emmanuel [1 ,2 ]
Sacchi, Mauricio D. [1 ]
机构
[1] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada
[2] Schlumberger, Calgary, AB T2G 0P6, Canada
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2016年 / 54卷 / 06期
关键词
Blind deconvolution; nonminimum phase; optimization; sparsity; surface consistent;
D O I
10.1109/TGRS.2015.2513417
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We describe a method that allows for blind surface consistent estimation of the source and receiver wavelets of seismic signals. This is very relevant for surface-consistent deconvolution where current processing standards focus on the removal of the source and receiver effects under the minimum phase assumption. The proposed method, which is an extension of the Euclid deconvolution method, employs an iterative algorithm that simultaneously estimates the source and receiver wavelets that are consistent with the data. Unlike most deconvolution methods, the algorithm requires no prior phase assumptions. Another important feature of the algorithm is that we questioned the Gaussian density assumption of the reflectivity series and instead implemented a sparse regularizer to constrain the solution space of our desired reflectivity series. In other words, we assume that the reflectivity series can be cast as a sparse vector with few nonzero coefficients.
引用
收藏
页码:3200 / 3207
页数:8
相关论文
共 50 条
  • [1] Multichannel Sparse Blind Deconvolution on the Sphere
    Li, Yanjun
    Bresler, Yoram
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (11) : 7415 - 7436
  • [2] Sparse Multichannel Blind Deconvolution of Seismic Data via Spectra Project-Gradient
    Iqbal, Naveed
    Liu, Entao
    Mcclellan, James H.
    Al-Shuhail, Abdullatif A.
    IEEE ACCESS, 2019, 7 : 23740 - 23751
  • [3] Multichannel blind deconvolution of transient impulsive signals
    Lecumberri, P.
    Gomez, M.
    Carlosena, A.
    2006 IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE PROCEEDINGS, VOLS 1-5, 2006, : 1145 - +
  • [4] Reflectivity-Consistent Sparse Blind Deconvolution for Denoising and Calibration of Multichannel GPR Volume Images
    Imai, Takanori
    Mizutani, Tsukasa
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [5] MU decomposition from multichannel surface EMG signals using blind deconvolution
    Maekawa, Satoshi
    Arimoto, Takahiko
    Kotani, Manabu
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 2007, 90 (02): : 22 - 30
  • [6] Exact Recovery of Multichannel Sparse Blind Deconvolution via Gradient Descent
    Qu, Qing
    Li, Xiao
    Zhu, Zhihui
    SIAM JOURNAL ON IMAGING SCIENCES, 2020, 13 (03): : 1630 - 1652
  • [7] On The Impossibility of Blind Deconvolution for Geometrically Decaying Subspace Sparse Signals
    Choudhary, Sunav
    Mitra, Urbashi
    2014 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2014, : 463 - 467
  • [8] A note on the blind deconvolution of multiple sparse signals from unknown subspaces
    Cosse, Augustin
    WAVELETS AND SPARSITY XVII, 2017, 10394
  • [9] Blind Deconvolution From Multiple Sparse Inputs
    Wang, Liming
    Chi, Yuejie
    IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (10) : 1384 - 1388
  • [10] Multichannel image blind deconvolution algorithm
    Berezovskiy, Andrey A.
    Goryachkin, Oleg V.
    OPTICAL TECHNOLOGIES FOR TELECOMMUNICATIONS 2011, 2012, 8410