High-powered optical superlattice with robust phase stability for quantum gas microscopy

被引:11
作者
Li, Meng-Da [1 ,2 ,3 ,4 ]
Lin, Wan [1 ,2 ,3 ,4 ]
Luo, An [1 ,2 ,3 ,4 ]
Zhang, Wei-Yong [1 ,2 ,3 ,4 ]
Sun, Hui [1 ,2 ,3 ,4 ]
Xiao, Bo [1 ,2 ,3 ,4 ]
Zheng, Yong-Guang [1 ,2 ,3 ,4 ]
Yuan, Zhen-Sheng [1 ,2 ,3 ,4 ]
Pan, Jian-Wei [1 ,2 ,3 ,4 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, CAS Ctr Excellence, Hefei 230026, Anhui, Peoples R China
[4] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
来源
OPTICS EXPRESS | 2021年 / 29卷 / 09期
基金
中国国家自然科学基金;
关键词
ULTRACOLD ATOMS; ENTANGLEMENT; SPIN;
D O I
10.1364/OE.423776
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optical superlattice has a wide range of applications in the study of ultracold atom physics. Especially, it can be used to trap and manipulate thousands of atom pairs in parallel which constitutes a promising system for quantum simulation and quantum computation. In the present work, we report on a high-power optical superlattice formed by a 532-nm and 1064-nm dual-wavelength interferometer with a short lattice spacing of 630 nm. The short-term fluctuation (in 10 seconds) of the relative phase between the short lattice and the long lattice is measured to be 0.003 pi, which satisfies the needs for performing two-qubit gates among neighboring lattice sites. We further implement this superlattice in a Rb-87 experiment with a quantum gas microscope of single-site resolution, where the high-power 532-nm laser is necessary for pinning atoms in the short lattice during imaging, providing a unique platform for engineering quantum states. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:13876 / 13886
页数:11
相关论文
共 26 条
  • [1] Alduchov OA, 1996, J APPL METEOROL, V35, P601, DOI 10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO
  • [2] 2
  • [3] Probing the Superfluid-to-Mott Insulator Transition at the Single-Atom Level
    Bakr, W. S.
    Peng, A.
    Tai, M. E.
    Ma, R.
    Simon, J.
    Gillen, J. I.
    Foelling, S.
    Pollet, L.
    Greiner, M.
    [J]. SCIENCE, 2010, 329 (5991) : 547 - 550
  • [4] Spin- and density-resolved microscopy of antiferromagnetic correlations in Fermi-Hubbard chains
    Boll, Martin
    Hilker, Timon A.
    Salomon, Guillaume
    Omran, Ahmed
    Nespolo, Jacopo
    Pollet, Lode
    Bloch, Immanuel
    Gross, Christian
    [J]. SCIENCE, 2016, 353 (6305) : 1257 - 1260
  • [5] Choi J., 2016, SCIENCE, V352, P6293, DOI DOI 10.1126/SCIENCE.AAF8834
  • [6] Refractive index of air: New equations for the visible and near infrared
    Ciddor, PE
    [J]. APPLIED OPTICS, 1996, 35 (09): : 1566 - 1573
  • [7] Dai HN, 2017, NAT PHYS, V13, P1195, DOI [10.1038/nphys4243, 10.1038/NPHYS4243]
  • [8] Dai HN, 2016, NAT PHYS, V12, P783, DOI [10.1038/nphys3705, 10.1038/NPHYS3705]
  • [9] Measuring entanglement entropy in a quantum many-body system
    Islam, Rajibul
    Ma, Ruichao
    Preiss, Philipp M.
    Tai, M. Eric
    Lukin, Alexander
    Rispoli, Matthew
    Greiner, Markus
    [J]. NATURE, 2015, 528 (7580) : 77 - 83
  • [10] Optical lattices for atom-based quantum microscopy
    Klinger, Andreas
    Degenkolb, Skyler
    Gemelke, Nathan
    Soderberg, Kathy-Anne Brickman
    Chin, Cheng
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (01)