Quasi-sure p-variation of fractional Brownian motion

被引:0
作者
Cao, Guilan
He, Kai [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Appl Math, Beijing 100080, Peoples R China
[2] Tsing Hua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
sobolev spiced; fractional Brownian motion; p-variation; quasi-sure convergence; (p; alpha)-modificition; infinity-modificnion;
D O I
10.1016/j.spl.2006.09.016
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we prove that for the fractional Brownian motion B-t with Hurst parameter H, the quasi-sure limit of the form Sigma(2n-1)(i=0)vertical bar B-ti+1(n) (Lambda t)-B-ti(Lambda t)n vertical bar(p) is zero, where t(i)(n)= i2(-n), p > 1/H. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:543 / 548
页数:6
相关论文
共 20 条
  • [1] Al├a┬▓s E., 2003, STOCHASTICS STOCHAST, V75, P129, DOI [DOI 10.1080/1045112031000078917, 10.1080/1045112031000078917]
  • [2] Stochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than 1/2
    Alòs, E
    Mazet, O
    Nualart, D
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2000, 86 (01) : 121 - 139
  • [3] Stochastic calculus with respect to Gaussian processes
    Alòs, E
    Mazet, O
    Nualart, D
    [J]. ANNALS OF PROBABILITY, 2001, 29 (02) : 766 - 801
  • [4] Tanaka formula for the fractional Brownian motion
    Coutin, L
    Nualart, D
    Tudor, CA
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2001, 94 (02) : 301 - 315
  • [5] Dai W, 1996, J APPL MATH STOCHAST, V10, P439, DOI DOI 10.1155/S104895339600038X
  • [6] Stochastic analysis of the fractional Brownian motion
    Decreusefond, L
    Üstünel, AS
    [J]. POTENTIAL ANALYSIS, 1999, 10 (02) : 177 - 214
  • [7] Stochastic calculus for fractional Brownian motion - I. Theory
    Duncan, TE
    Hu, YZ
    Pasik-Duncan, B
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (02) : 582 - 612
  • [8] Quasi sure quadratic variation of local times of smooth semimartingales
    He, K
    Ren, JG
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2004, 128 (02): : 91 - 104
  • [9] Infinite dimensional quasi continuity, path continuity and ray continuity of functions with fractional regularity
    Hu, JH
    Ren, JG
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (01): : 131 - 152
  • [10] HU Y, 1999, FRACTIONAL WHITE NOI, V10