Multiple strategies for drought survival among woody plant species

被引:152
作者
Pivovaroff, Alexandria L. [1 ]
Pasquini, Sarah C. [1 ]
De Guzman, Mark E. [1 ]
Alstad, Karrin P. [1 ]
Stemke, Jenessa S. [1 ]
Santiago, Louis S. [1 ]
机构
[1] Univ Calif Riverside, Dept Bot & Plant Sci, 2150 Batchelor Hall, Riverside, CA 92521 USA
基金
美国国家科学基金会;
关键词
climate change; drought-induced mortality; hydraulic conductance; Mediterranean-type ecosystems; photosynthesis; plant water potential; transpiration; xylem cavitation; VULNERABILITY CURVES; WATER; XYLEM; MORTALITY; CLIMATE; FOREST; LEAF; STEM; COORDINATION; CONVERGENCE;
D O I
10.1111/1365-2435.12518
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Drought-induced mortality and regional dieback of woody vegetation are reported from numerous locations around the world. Yet within any one site, predicting which species are most likely to survive global change-type drought is a challenge. We studied the diversity of drought survival traits of a community of 15 woody plant species in a desert-chaparral ecotone. The vegetation was a mix of chaparral and desert shrubs, as well as endemic species that only occur along this margin. This vegetation boundary has large potential for drought-induced mortality because nearly all species are at the edge of their range. Drought survival traits studied were vulnerability to drought-induced xylem cavitation, sapwood capacitance, deciduousness, photosynthetic stems, deep roots, photosynthetic responses to leaf water potential and hydraulic architecture. Drought survival strategies were evaluated as combinations of traits that could be effective in dealing with drought. The large variation in seasonal predawn water potential of leaves and stem xylem ranged from -682 to -029 MPa and -692 to -027 MPa, respectively. The water potential at which photosynthesis ceases ranged from -942 to -344 MPa. Architecture was a determinant of hydraulic traits, with species supporting large leaf area per sapwood area exhibiting high rates of water transport, but also xylem that is vulnerable to drought-induced cavitation. Species with more negative midday leaf water potential during the growing season also showed access to deeper water sources based on hydrogen isotope analysis. Drought survival mechanisms comprised of drought deciduousness, photosynthetic stems, tolerance of low minimum seasonal tissue water potential and vulnerability to drought-induced xylem cavitation thus varied orthogonally among species, and promote a diverse array of drought survival strategies in an arid ecosystem of considerable floristic complexity.
引用
收藏
页码:517 / 526
页数:10
相关论文
共 50 条
[1]   Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance [J].
Ackerly, D .
ECOLOGICAL MONOGRAPHS, 2004, 74 (01) :25-44
[2]   Adaptation, niche conservatism, and convergence: Comparative studies of leaf evolution in the California chaparral [J].
Ackerly, DD .
AMERICAN NATURALIST, 2004, 163 (05) :654-671
[3]   Use of centrifugal force in the study of xylem cavitation [J].
Alder, NN ;
Pockman, WT ;
Sperry, JS ;
Nuismer, S .
JOURNAL OF EXPERIMENTAL BOTANY, 1997, 48 (308) :665-674
[4]   Drought-induced shift of a forest-woodland ecotone: Rapid landscape response to climate variation [J].
Allen, CD ;
Breshears, DD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (25) :14839-14842
[5]   A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests [J].
Allen, Craig D. ;
Macalady, Alison K. ;
Chenchouni, Haroun ;
Bachelet, Dominique ;
McDowell, Nate ;
Vennetier, Michel ;
Kitzberger, Thomas ;
Rigling, Andreas ;
Breshears, David D. ;
Hogg, E. H. ;
Gonzalez, Patrick ;
Fensham, Rod ;
Zhang, Zhen ;
Castro, Jorge ;
Demidova, Natalia ;
Lim, Jong-Hwan ;
Allard, Gillian ;
Running, Steven W. ;
Semerci, Akkin ;
Cobb, Neil .
FOREST ECOLOGY AND MANAGEMENT, 2010, 259 (04) :660-684
[7]  
[Anonymous], OFF SOIL SER DESCR
[8]  
[Anonymous], 1981, J APPL ECOL
[9]   Contribution of stem CO2 fixation to whole-plant carbon balance in nonsucculent species [J].
Avila, E. ;
Herrera, A. ;
Tezara, W. .
PHOTOSYNTHETICA, 2014, 52 (01) :3-15
[10]  
Axelrod D. I., 1977, OUTLINE HIST CALIFOR, P139