Influences of multi factors on thermal runaway induced by overcharging of lithium-ion battery

被引:69
|
作者
Liu, Jialong [1 ]
Wang, Zhirong [1 ]
Bai, Jinlong [1 ]
机构
[1] Nanjing Tech Univ, Coll Safety Sci & Engn, Jiangsu Key Lab Hazardous Chem Safety & Control, Nanjing 21009, Jiangsu, Peoples R China
来源
JOURNAL OF ENERGY CHEMISTRY | 2022年 / 70卷
基金
中国国家自然科学基金;
关键词
Lithium-ion battery safety; Overcharging; Aging; Thermal runaway; ELECTRIC VEHICLES; FAILURE-MECHANISM; BEHAVIOR; CELLS; FEATURES; CATHODE;
D O I
10.1016/j.jechem.2022.03.011
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Thermal runaway caused by overcharging results in catastrophic disasters. The influences of charging rate, ambient temperature and aging on thermal runaway caused by overcharging are studied qualita-tively and quantitatively in this manuscript. The results of overcharging tests indicate that high charging rate and ambient temperature increase thermal runaway risk. Aging in 40 degrees C decreases thermal runaway risk. The risk increase of battery with high overcharging rate and in high ambient temperature is due to fast lithium plating reaction and accelerated SEI decomposition, respectively. The risk decrease of aged battery is due to the occurrence of SEI before overcharging tests. SEI suppresses the side reactions between lithium plating and electrolyte. The results of orthogonal tests indicate that the rank of effect is: discharging rate > ambient temperature > aging. The heat generation is calculated based on the results of overcharging tests. The calculation results indicate that heat generated by side reactions contributes more to the total heat generation. Although thermal runaway does not occur during overcharging with low current, the heat dissipation of the lithium-ion battery is the most and deserves focus. The results are important to the design of battery management system and thermal management system to prevent thermal runaway induced by overcharging in total lifespan of battery.(c) 2022 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
引用
收藏
页码:531 / 541
页数:11
相关论文
共 50 条
  • [31] Lithium-ion battery degradation caused by overcharging at low temperatures
    Sun, Pengfei
    Zhang, Xiaoning
    Wang, Shixue
    Zhu, Yu
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2022, 30
  • [32] Study on the suppression of thermal runaway of lithium-ion battery by water mist with different additives
    Li, Lixia
    Chen, Zhen
    Lu, Yuan
    Zang, Pengju
    Zhan, Wang
    Cheng, Yuhe
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2023, 45 (04) : 11349 - 11362
  • [33] A multi-level early warning strategy for the LiFePO4 battery thermal runaway induced by overcharge
    Zhang, Ying
    Li, Siyang
    Mao, Binbin
    Shi, Jihao
    Zhang, Xiankai
    Zhou, Liang
    APPLIED ENERGY, 2023, 347
  • [34] Effects of charging rates on heat and gas generation in lithium-ion battery thermal runaway triggered by high temperature coupled with overcharge
    Guo, Qianzhen
    Liu, Shaoyan
    Zhang, Jiabo
    Huang, Zhen
    Han, Dong
    JOURNAL OF POWER SOURCES, 2024, 600
  • [35] Study on thermal runaway warning method of lithium-ion battery
    Ji, Changwei
    Zhang, Zhizu
    Wang, Bing
    Zhang, Shouqin
    Liu, Yangyi
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2022, 78
  • [36] Effects of electrode pattern on thermal runaway of lithium-ion battery
    Wang, Meng
    Le, Anh V.
    Noelle, Daniel J.
    Shi, Yang
    Yoon, Hyojung
    Zhang, Minghao
    Meng, Y. Shirley
    Qiao, Yu
    INTERNATIONAL JOURNAL OF DAMAGE MECHANICS, 2018, 27 (01) : 74 - 81
  • [37] Effects of Angular Fillers on Thermal Runaway of Lithium-Ion Battery
    Meng Wang
    Anh V.Le
    Yang Shi
    Daniel J.Noelle
    Hyojung Yoon
    Minghao Zhang
    Y.Shirley Meng
    Yu Qiao
    Journal of Materials Science & Technology, 2016, 32 (11) : 1117 - 1121
  • [38] Combined numerical and experimental studies of 21700 lithium-ion battery thermal runaway induced by different thermal abuse
    Shelkea, Ashish, V
    Buston, Jonathan E. H.
    Gill, Jason
    Howard, Daniel
    Williams, Rhiannon C. E.
    Read, Elliott
    Abaza, Ahmed
    Cooper, Brian
    Richards, Philp
    Wen, Jennifer X.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 194
  • [39] Thermal behavior and failure mechanisms of 18650 lithium ion battery induced by overcharging cycling
    Zhong, Huaiyu
    Zhong, Qingdong
    Yang, Jian
    Zhong, Shengwen
    ENERGY REPORTS, 2022, 8 : 7286 - 7296
  • [40] Battery material thermal instability and side reaction for lithium-ion battery thermal runaway: A short review
    Ding, Yan
    Lu, Li
    Zhang, Huangwei
    FUNCTIONAL MATERIALS LETTERS, 2023, 16 (03N04)