Extension problems and non-Abelian duality for C*-algebras

被引:0
|
作者
Huef, Astrid An [1 ]
Kaliszewski, S.
Raeburn, Iain
机构
[1] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Arizona State Univ, Dept Math & Stat, Tempe, AZ 85287 USA
[3] Univ Newcastle, Sch Math & Phys Sci, Newcastle, NSW 2308, Australia
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that H is a closed subgroup of a locally compact group G. We show that a unitary representation U of H is the restriction of a unitary representation of G if and only if a dual representation (U) over cap of a crossed product C*(G) x (G/H) is regular in an appropriate sense. We then discuss the problem of deciding whether a given representation is regular; we believe that this problem will prove to be an interesting test question in non-Abelian duality for crossed products of C*-algebras.
引用
收藏
页码:229 / 238
页数:10
相关论文
共 50 条
  • [1] Extended Drinfel'd algebras and non-Abelian duality
    Sakatani, Yuho
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2021, 2021 (06):
  • [2] ON NON-ABELIAN DUALITY
    ALVAREZ, E
    ALVAREZGAUME, L
    LOZANO, Y
    NUCLEAR PHYSICS B, 1994, 424 (01) : 155 - 183
  • [3] Supersymmetric extension of the non-Abelian scalar-tensor duality
    Furuta, K
    Inami, T
    Nakajima, H
    Nitta, M
    PROGRESS OF THEORETICAL PHYSICS, 2001, 106 (04): : 851 - 862
  • [4] On geometry of non-abelian duality
    Severa, P
    NONCOMMUTATIVE DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS TO PHYSICS, PROCEEDINGS, 2001, 23 : 217 - 226
  • [5] NON-ABELIAN PONTRIAGIN DUALITY
    AKEMANN, CA
    WALTER, ME
    DUKE MATHEMATICAL JOURNAL, 1972, 39 (03) : 451 - &
  • [6] REMARKS ON NON-ABELIAN DUALITY
    ELITZUR, S
    GIVEON, A
    RABINOVICI, E
    SCHWIMMER, A
    VENEZIANO, G
    NUCLEAR PHYSICS B, 1995, 435 (1-2) : 147 - 171
  • [7] A PROBLEM WITH NON-ABELIAN DUALITY
    GASPERINI, M
    RICCI, R
    VENEZIANO, G
    PHYSICS LETTERS B, 1993, 319 (04) : 438 - 444
  • [8] REPRESENTATIONS OF COINVOLUTIVE HOPF-W-STAR-ALGEBRAS AND NON-ABELIAN DUALITY
    KIRCHBERG, E
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1977, 25 (02): : 117 - 122
  • [9] Non-abelian duality for open strings
    Forste, S
    Kehagias, AA
    Schwager, S
    NUCLEAR PHYSICS B, 1996, 478 (1-2) : 141 - 155
  • [10] A solution to the non-Abelian duality problem
    Cobanera, E.
    Ortiz, G.
    Knill, E.
    NUCLEAR PHYSICS B, 2013, 877 (02) : 574 - 597