Insight into the activation of CO2 and H2 on K2O-adsorbed Fe5C2(110) for olefins production: A density functional theory study

被引:9
|
作者
Chen, Haipeng [1 ]
Ma, Ningning [1 ]
Wang, Chenwei [1 ]
Liu, Chenlei [1 ]
Shen, Jiamiao [1 ]
Wang, Youjiao [1 ]
Xu, Gao [1 ]
Yang, Qingfeng [2 ]
Feng, Xun [1 ]
机构
[1] Luoyang Normal Univ, Coll Chem & Chem Engn, Henan Key Lab Funct Oriented Porous Mat, Luoyang 471934, Peoples R China
[2] Ningxia Univ, State Key Lab High efficiency Utilizat Coal & Gree, Yinchuan 750021, Peoples R China
基金
中国国家自然科学基金;
关键词
Carbon dioxide; Molecular activation; Surface science; Catalytic hydrogenation; Olefins; CARBON-DIOXIDE; HAGG-CARBIDE; HYDROGENATION; CATALYSTS; ADSORPTION; CONVERSION; SITES;
D O I
10.1016/j.mcat.2022.112323
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The activation of reactant molecules on catalyst surface plays critical roles in the catalytic reaction process. The activation of CO2 and H2 molecules on clean and K2O-adsorbed Fe5C2(110) were comparatively investigated via density functional theory (DFT) calculations to disclose the promoting effect of K2O on hydrogenation of CO2 to olefins. DFT calculations suggest that the adsorption of K2O helps to direct activation of CO2 to CO species, and then promote in-situ C-C* coupling of CO with surface carbon of chi-Fe5C2. The Fe-H bond from H2 dissociation on K2O-adsorbed Fe5C2(110) can lower the activity of H species, by which helps to avoid the over-hydrogenation of olefins to saturated alkanes. This study partially reveals the promoting effect of K2O on the activation of reactant molecules on chi-Fe5C2 surface, which is helpful to design new catalysts for CO2 conversion to value-added chemicals.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Density functional theory study of hydrogen adsorption on Fe5C2(001), Fe5C2(110), and Fe5C2(100)
    Cao, DB
    Zhang, FQ
    Li, YW
    Wang, JG
    Jiao, HJ
    JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (02): : 833 - 844
  • [2] Structures and energies of coadsorbed CO and H2 on Fe5CA(001), Fe5C2(110), and Fe5C2(100)
    Cao, DB
    Zhang, FQ
    Li, YW
    Wang, JG
    Jiao, HJ
    JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (21): : 10922 - 10935
  • [3] Density functional theory study of CO adsorption on Fe5C2(001), -(100), and -(110) surfaces
    Cao, DB
    Zhang, FQ
    Li, YW
    Jiao, HJ
    JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (26): : 9094 - 9104
  • [4] Theoretical study about adsorbed oxygen reduction over χ-Fe5C2: formation of H2O and CO2
    Bai, Ya
    Liu, Jinjia
    Wang, Tao
    Song, Yu-Fei
    Li, Yong-Wang
    Yang, Yong
    Wen, Xiaodong
    MOLECULAR CATALYSIS, 2022, 524
  • [5] Density functional theory study into H2O dissociative adsorption on the Fe5C2(010) surface
    Gao, Rui
    Cao, Dong-Bo
    Liu, Shaoli
    Yang, Yong
    Li, Yong-Wang
    Wang, Jianguo
    Jiao, Haijun
    APPLIED CATALYSIS A-GENERAL, 2013, 468 : 370 - 383
  • [6] Insight into the role of Fe5C2 in CO2 catalytic hydrogenation to hydrocarbons
    Liu, Junhui
    Zhang, Guanghui
    Jiang, Xiao
    Wang, Junhu
    Song, Chunshan
    Guo, Xinwen
    Catalysis Today, 2021, 371 : 162 - 170
  • [7] Insight into the role of Fe5C2 in CO2 catalytic hydrogenation to hydrocarbons
    Liu, Junhui
    Zhang, Guanghui
    Jiang, Xiao
    Wang, Junhu
    Song, Chunshan
    Guo, Xinwen
    CATALYSIS TODAY, 2021, 371 : 162 - 170
  • [8] Plane-Wave Density Functional Theory Investigations of the Adsorption and Activation of CO on Fe5C2 Surfaces
    Sorescu, Dan C.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (21): : 9256 - 9274
  • [9] Processes of H2 adsorption on Fe(110) surface: A density functional theory study
    Xie, Weiwei
    Peng, Liang
    Peng, Daoling
    Gu, Feng Long
    Liu, Jun
    APPLIED SURFACE SCIENCE, 2014, 296 : 47 - 52
  • [10] Mechanistic Insight into Hydrocarbon Synthesis via CO2 Hydrogenation on χ-Fe5C2 Catalysts
    Wang, Haozhi
    Nie, Xiaowa
    Liu, Yuan
    Janik, Michael J.
    Han, Xiaopeng
    Deng, Yida
    Hu, Wenbin
    Song, Chunshan
    Guo, Xinwen
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (33) : 37637 - 37651