ATP hydrolysis in the βTP and βDP catalytic sites of F1-ATPase

被引:73
作者
Dittrich, M
Hayashi, S
Schulten, K
机构
[1] Univ Illinois, Beckman Inst, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[3] Kyoto Univ, Fukui Inst Fundamental Chem, Theoret Chem Div, Kyoto 6068103, Japan
[4] Japan Sci & Technol Agcy, Kawaguchi, Saitama, Japan
关键词
D O I
10.1529/biophysj.104.046128
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The enzyme F-1-adenosine triphosphatase (ATPase) is a molecular motor that converts the chemical energy stored in the molecule adenosine triphosphate (ATP) into mechanical rotation of its gamma-subunit. During steady-state catalysis, the three catalytic sites of F-1 operate in a cooperative fashion such that at every instant each site is in a different conformation corresponding to a different stage along the catalytic cycle. Notwithstanding a large amount of biochemical and, recently, structural data, we still lack an understanding of how ATP hydrolysis in F-1 is coupled to mechanical motion and how the catalytic sites achieve cooperativity during rotatory catalysis. In this publication, we report combined quantum mechanical/molecular mechanical simulations of ATP hydrolysis in the beta(TP) and beta(DP) catalytic sites of F-1-ATPase. Our simulations reveal a dramatic change in the reaction energetics from strongly endothermic in beta(TP) to approximately equienergetic in beta(DP). The simulations identify the responsible protein residues, the arginine finger alphaR373 being the most important one. Similar to our earlier study of beta(TP), we find a multicenter proton relay mechanism to be the energetically most favorable hydrolysis pathway. The results elucidate how cooperativity between catalytic sites might be achieved by this remarkable molecular motor.
引用
收藏
页码:2954 / 2967
页数:14
相关论文
共 61 条
[1]   STRUCTURE AT 2.8-ANGSTROM RESOLUTION OF F1-ATPASE FROM BOVINE HEART-MITOCHONDRIA [J].
ABRAHAMS, JP ;
LESLIE, AGW ;
LUTTER, R ;
WALKER, JE .
NATURE, 1994, 370 (6491) :621-628
[2]   Insights into the molecular mechanism of rotation in the Fo sector of ATP synthase [J].
Aksimentiev, A ;
Balabin, IA ;
Fillingame, RH ;
Schulten, K .
BIOPHYSICAL JOURNAL, 2004, 86 (03) :1332-1344
[3]  
ALSHAWI MK, 1989, J BIOL CHEM, V264, P15376
[4]  
ALSHAWI MK, 1990, J BIOL CHEM, V265, P4402
[5]   SPATIAL PRECISION OF A CATALYTIC CARBOXYLATE OF F1-ATPASE BETA-SUBUNIT PROBED BY INTRODUCING DIFFERENT CARBOXYLATE-CONTAINING SIDE-CHAINS [J].
AMANO, T ;
TOZAWA, K ;
YOSHIDA, M ;
MURAKAMI, H .
FEBS LETTERS, 1994, 348 (01) :93-98
[6]   Aqueous access channels in subunit a of rotary ATP synthase [J].
Angevine, CM ;
Fillingame, RH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (08) :6066-6074
[7]   A WELL-BEHAVED ELECTROSTATIC POTENTIAL BASED METHOD USING CHARGE RESTRAINTS FOR DERIVING ATOMIC CHARGES - THE RESP MODEL [J].
BAYLY, CI ;
CIEPLAK, P ;
CORNELL, WD ;
KOLLMAN, PA .
JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (40) :10269-10280
[8]   REFINED MONTE-CARLO STUDY OF MG2+ AND CA2+ HYDRATION [J].
BERNALURUCHURTU, MI ;
ORTEGABLAKE, I .
JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (04) :1588-1598
[9]  
Bhandarkar M, 1999, SIMUL SERIES, V31, P242
[10]   Nanoseconds molecular dynamics simulation of primary mechanical energy transfer steps in F1-ATP synthase [J].
Böckmann, RA ;
Grubmüller, H .
NATURE STRUCTURAL BIOLOGY, 2002, 9 (03) :198-202