Mechanisms of antifreeze proteins investigated via the site-directed spin labeling technique

被引:15
|
作者
Flores, Antonia [1 ]
Quon, Justin C. [1 ]
Perez, Adiel F. [1 ]
Ba, Yong [1 ]
机构
[1] Calif State Univ Los Angeles, Dept Chem & Biochem, 5151 State Univ Dr, Los Angeles, CA 90032 USA
来源
EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS | 2018年 / 47卷 / 06期
基金
美国国家卫生研究院;
关键词
Type-I antifreeze protein; Site-directed spin labeling; VT EPR; Ice crystals; Ice growth inhibition; Ice nucleation inhibition; POINT-DEPRESSING GLYCOPROTEINS; ICE GROWTH-INHIBITION; WINTER FLOUNDER; FREEZING RESISTANCE; PSEUDOPLEURONECTES-AMERICANUS; PHYSICAL-PROPERTIES; AQUEOUS-SOLUTIONS; ANTARCTIC FISHES; NMR; BINDING;
D O I
10.1007/s00249-018-1285-3
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The site-directed spin labeling (SDSL) technique was used to examine the antifreeze mechanisms of type-I antifreeze proteins (AFPs). The effects on the growth of seed ice crystals by the spin-label groups attached to different side chains of the AFPs were observed, and the states of water molecules surrounding the spin-label groups were probed via analyses of variable-temperature (VT) dependent electron paramagnetic resonance (EPR) spectra. The first set of experiments revealed the antifreeze activities of the spin-labeled AFPs at the microscopic level, while the second set of experiments displayed those at the molecular level. The experimental results confirmed the putative ice-binding surface (IBS) of type-I AFPs. The VT EPR spectra indicate that type-I AFPs can inhibit the nucleation of seed ice crystals down to similar to - 20 degrees C in their aqueous solutions. Thus, the present authors believe that AFPs protect organisms from freezing damage in two ways: (1) inhibiting the nucleation of seed ice crystals, and (2) hindering the growth of seed ice crystals once they have formed. The first mechanism should play a more significant role in protecting against freezing damage among organisms living in cold environments. The VT EPR spectra also revealed that liquid-like water molecules existed around the spin-labeled non-ice-binding side chains of the AFPs frozen within the ice matrices, and ice surrounding the spin-label groups melted at subzero temperatures during the heating process. This manuscript concludes with the proposed model of antifreeze mechanisms of AFPs based on the experimental results.
引用
收藏
页码:611 / 630
页数:20
相关论文
empty
未找到相关数据