GLOBAL CONTROLLABILITY AND STABILIZATION FOR THE NONLINEAR SCHRODINGER EQUATION ON AN INTERVAL

被引:43
作者
Laurent, Camille [1 ]
机构
[1] Univ Paris 11, F-91405 Orsay, France
关键词
Controllability; stabilization; nonlinear Schrodinger equation; Bourgain spaces;
D O I
10.1051/cocv/2009001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We prove global internal controllability in large time for the nonlinear Schrodinger equation on a bounded interval with periodic, Dirichlet or Neumann conditions. Our strategy combines stabilization and local controllability near 0. We use Bourgain spaces to prove this result on L-2. We also get a regularity result about the control if the data are assumed smoother.
引用
收藏
页码:356 / 379
页数:24
相关论文
共 23 条
[1]  
[Anonymous], 1976, GRUNDLEHREN MATH WIS
[2]  
Bardos C, 1996, CR ACAD SCI I-MATH, V323, P621
[3]  
Bourgain J., 1993, Geom. Funct. Anal., V3, P107
[4]  
BOURGAIN J, 1999, C PUBLICATIONS AM MA, V46, P105
[5]   Strichartz inequalities and the nonlinear Schrodinger equation on compact manifolds [J].
Burq, N ;
Gérard, P ;
Tzvetkov, N .
AMERICAN JOURNAL OF MATHEMATICS, 2004, 126 (03) :569-605
[6]   Geometric control in the presence of a black box [J].
Burq, N ;
Zworski, M .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 17 (02) :443-471
[7]   Stabilization and control for the nonlinear Schrodinger equation on a compact surface [J].
Dehman, B. ;
Gerard, P. ;
Lebeau, G. .
MATHEMATISCHE ZEITSCHRIFT, 2006, 254 (04) :729-749
[8]   Stabilization and control for the subcritical semilinear wave equation [J].
Dehman, B ;
Lebeau, G ;
Zuazua, E .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2003, 36 (04) :525-551
[9]  
DEHMAN B, ANAL HUM CONTROL OPE
[10]   MICROLOCAL DEFECT MEASURES [J].
GERARD, P .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1991, 16 (11) :1761-1794