Zipper-mediated oligomerization of the mixed lineage kinase SPRK/MLK-3 is not required for its activation by the GTPase cdc 42 but is necessary for its activation of the JNK Pathway -: Monomeric SPRK L410P does not catalyze the activating phosphorylation of Thr258 of murine mitogen-activated protein kinase kinase 4

被引:0
作者
Vacratsis, PO
Gallo, KA
机构
[1] Michigan State Univ, Dept Physiol, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Biochem, E Lansing, MI 48824 USA
关键词
D O I
10.1074/jbc.M002858200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Src homology 3 domain-containing proline-rich kinase (SPRK)/mixed lineage kinase-3 is a serine/threonine kinase that has been identified as an upstream activator of the c-Jun NH2-terminal kinase (JNK) pathway. SPRK is capable of activating MKK4 by phosphorylation of serine and threonine residues, and mutant forms of MKK4 that lack the phosphorylation sites Ser(254) and Thr(258) block SPRK-induced JNK activation. A region of 63 amino acids following the kinase domain of SPRK is predicted to form a leucine zipper. The leucine zipper domain of SPRK has been shown to be necessary and sufficient for SPRK oligomerization, but its role in regulating activation of SPRK and downstream signaling remains unclear. In this study, we substituted a proposed stabilizing leucine residue in the zipper domain with a helix-disrupting proline to abrogate zipper-mediated SPRK oligomerization. We demonstrate that constitutively activated Cdc42 fully activates this monomeric SPRK mutant in terms of both autophosphorylation and histone phosphorylation activity and induces the same in vivo phosphorylation pattern as wild type SPRK. However, this catalytically active SPRK zipper mutant is unable to activate JNK. Our data show that the monomeric SPRK mutant fails to phosphorylate one of the two activating phosphorylation sites, Thr(258), of MKK4. These studies suggest that zipper-mediated SPRK oligomerization is not required for SPRK activation by Cdc42 but instead is critical for proper interaction and phosphorylation of a downstream target, MKK4.
引用
收藏
页码:27893 / 27900
页数:8
相关论文
共 46 条
  • [1] ENGINEERING THE QUATERNARY STRUCTURE OF AN EXPORTED PROTEIN WITH A LEUCINE ZIPPER
    BLONDEL, A
    BEDOUELLE, H
    [J]. PROTEIN ENGINEERING, 1991, 4 (04): : 457 - 461
  • [2] Cdc42-induced activation of the mixed-lineage kinase SPRK in vivo -: Requirement of the Cdc42/Rac interactive binding motif and changes in phosphorylation
    Böck, BC
    Vacratsis, PO
    Qamirani, E
    Gallo, KA
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (19) : 14231 - 14241
  • [3] A CONSERVED BINDING MOTIF DEFINES NUMEROUS CANDIDATE TARGET PROTEINS FOR BOTH CDC42 AND RAC GTPASES
    BURBELO, PD
    DRECHSEL, D
    HALL, A
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (49) : 29071 - 29074
  • [4] Butch ER, 1996, J BIOL CHEM, V271, P4230
  • [5] C-H•••O hydrogen bond involving proline residues in α-helices
    Chakrabarti, P
    Chakrabarti, S
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1998, 284 (04) : 867 - 873
  • [6] Proline affects oligomerization of a coiled coil by inducing a kink in a long helix
    Chang, DK
    Cheng, SF
    Trivedi, VD
    Lin, KL
    [J]. JOURNAL OF STRUCTURAL BIOLOGY, 1999, 128 (03) : 270 - 279
  • [7] MUTATIONAL ANALYSIS OF THE LEUCINE ZIPPER-LIKE MOTIF OF THE HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 ENVELOPE TRANSMEMBRANE GLYCOPROTEIN
    CHEN, SSL
    LEE, CN
    LEE, WR
    MCINTOSH, K
    LEE, TH
    [J]. JOURNAL OF VIROLOGY, 1993, 67 (06) : 3615 - 3619
  • [8] Characterization of the mitogen-activated protein kinase kinase 4 (MKK4)/c-Jun NH2-terminal kinase 1 and MKK3/p38 pathways regulated by MEK kinases 2 and 3 - MEK kinase 3 activates MKK3 but does not cause activation of p38 kinase in vivo
    Deacon, K
    Blank, JL
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (22) : 14489 - 14496
  • [9] COMPLETE NUCLEOTIDE-SEQUENCE, EXPRESSION, AND CHROMOSOMAL LOCALIZATION OF HUMAN MIXED-LINEAGE KINASE-2
    DOROW, DS
    DEVEREUX, L
    TU, GF
    PRICE, G
    NICHOLL, JK
    SUTHERLAND, GR
    SIMPSON, RJ
    [J]. EUROPEAN JOURNAL OF BIOCHEMISTRY, 1995, 234 (02): : 492 - 500
  • [10] MEKKs, GCKs, MLKs, PAKs, TAKs, and Tpls: Upstream regulators of the c-Jun amino-terminal kinases?
    Fanger, GR
    Gerwins, P
    Widmann, C
    Jarpe, MB
    Johnson, GL
    [J]. CURRENT OPINION IN GENETICS & DEVELOPMENT, 1997, 7 (01) : 67 - 74