Solving an Inverse Problem for the Sturm-Liouville Operator with Singular Potential by Yurko's Method

被引:12
作者
Bondarenko, Natalia P. [1 ,2 ]
机构
[1] Samara Natl Res Univ, Dept Appl Math & Phys, Moskovskoye Shosse 34, Samara 443086, Russia
[2] Saratov NG Chernyshevskii State Univ, Dept Mech & Math, Astrakhanskaya 83, Saratov 410012, Russia
来源
TAMKANG JOURNAL OF MATHEMATICS | 2021年 / 52卷 / 01期
基金
俄罗斯科学基金会;
关键词
inverse spectral problems; Sturm-Liouville operator; singular potential; method of spectral mappings; SPECTRAL PROBLEMS; DIFFERENTIAL-EQUATIONS; ASYMPTOTICS; RECONSTRUCTION; EIGENVALUES;
D O I
10.5556/j.tkjm.52.2021.3700
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An inverse spectral problem for the Sturm-Liouville operator with singular potential of class W-2(-1) is solved by the method of spectral mappings. We prove a uniqueness theorem, develop a constructive algorithm for solution and obtain necessary and sufficient conditions of solvability for the inverse problem in the self-adjoint and non-self-adjoint cases.
引用
收藏
页码:125 / 154
页数:30
相关论文
共 42 条
[1]   On a local solvability and stability of the inverse transmission eigenvalue problem [J].
Bondarenko, Natalia ;
Buterin, Sergey .
INVERSE PROBLEMS, 2017, 33 (11)
[2]   An inverse problem for Sturm-Liouville operators on trees with partial information given on the potentials [J].
Bondarenko, Natalia P. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (05) :1512-1528
[3]   A 2-EDGE PARTIAL INVERSE PROBLEM FOR THE STURM-LIOUVILLE OPERATORS WITH SINGULAR POTENTIALS ON A STAR-SHAPED GRAPH [J].
Bondarenko, Natalia Pavlovna .
TAMKANG JOURNAL OF MATHEMATICS, 2018, 49 (01) :49-66
[4]   On inverse spectral problem for non-selfadjoint Sturm-Liouville operator on a finite interval [J].
Buterin, S. A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 335 (01) :739-749
[5]   Spectral gap asymptotics of one-dimensional Schrodinger operators with singular periodic potentials [J].
Djakov, P. ;
Mityagin, B. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2009, 20 (3-4) :265-273
[6]  
Freiling G., 2001, Inverse Sturm-Liouville problems and their applications
[7]  
Frenling G, 2008, P SYMP PURE MATH, V77, P397
[8]   Schrodinger operators with distributional potentials and boundary conditions dependent on the eigenvalue parameter [J].
Guliyev, Namig J. .
JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (06)
[9]   Riesz bases of solutions of Sturm-Liouville equations [J].
He, XH ;
Volkmer, H .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2001, 7 (03) :297-307
[10]   Eigenvalue asymptotics for Sturm-Liouville operators with singular potentials [J].
Hryniv, R. O. ;
Mykytyuk, Y. V. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 238 (01) :27-57