Dispersive estimates for the Dirac equation in an Aharonov-Bohm field

被引:13
作者
Cacciafesta, F. [1 ]
Fanelli, L. [2 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via R Cozzi,53, I-20125 Milan, Italy
[2] SAPIENZA Univ Roma, Dipartimento Matemat, Ple A Moro 5, I-00185 Rome, Italy
关键词
Dirac equation; Magnetic potentials; Local smoothing; SCHRODINGER-EQUATIONS; GLOBAL EXISTENCE; BESSEL-FUNCTIONS; TIME-DECAY; WAVE; POTENTIALS;
D O I
10.1016/j.jde.2017.05.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove local smoothing and weighted Strichartz estimates for the Dirac equation with a Aharonov-Bohm potential. The proof, inspired by [12], relies on an explicit representation of the solution built in terms of spectral projections. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:4382 / 4399
页数:18
相关论文
共 37 条
[31]  
Peshkin M, 1989, Lecture Notes in Physics, V340
[32]  
Planchon F, 2003, DISCRETE CONT DYN S, V9, P427
[33]   Self-adjointness of the two-dimensional massless Dirac Hamiltonian and vacuum polarization effects in the background of a singular magnetic vortex [J].
Sitenko, YA .
ANNALS OF PHYSICS, 2000, 282 (02) :167-217
[34]   A weighted uniforml Lp-estimate of Bessel functions:: A note on a paper of Guo [J].
Stempak, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (10) :2943-2945
[35]   HARMONIC-ANALYSIS AS SPECTRAL THEORY OF LAPLACIANS [J].
STRICHARTZ, RS .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 87 (01) :51-148
[36]   Weighted estimates for powers and smoothing estimates of Schrodinger operators with inverse-square potentials [J].
The Anh Bui ;
D'Ancona, Piero ;
Xuan Thinh Duong ;
Li, Ji ;
Ly, Fu Ken .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (03) :2771-2807
[37]   OSCILLATION METHODS FOR SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS [J].
WEIDMANN, J .
MATHEMATISCHE ZEITSCHRIFT, 1971, 119 (04) :349-&