Direct catalytic asymmetric Michael reaction of hydroxyketones:: Asymmetric Zn catalysis with a Et2Zn/linked-BINOL complex

被引:111
作者
Harada, S [1 ]
Kumagai, N [1 ]
Kinoshita, T [1 ]
Matsunaga, S [1 ]
Shibasaki, M [1 ]
机构
[1] Univ Tokyo, Grad Sch Pharmaceut Sci, Bunkyo Ku, Tokyo 1130033, Japan
关键词
D O I
10.1021/ja028928+
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Full details of our direct Michael addition of unmodified ketones using new asymmetric zinc catalysis are described. Et2Zn/(S,S)-linked-BINOL complexes were successfully applied to direct 1,4-addition reactions of hydroxyketones. The first generation Et2Zn/(S,S)-linked-BINOL 1 = 2/1 system was effective for 1,4-addition of 2-hydroxy-2'-methoxyacetophenone (3). Using 1 mol % of (S,S)-linked-BINOL 1 and 2 mol % of Et2Zn, we found that a 1,4-addition reaction of beta-unsubstituted enone proceeded smoothly at 4 degreesC to afford products in high yield (up to 90%) and enantiomeric excess (up to 95%). In the case of beta-substituted enones, however, the first generation Et2Zn/(S,S)-linked-BINOL 1 = 2/1 system was not at all effective. The second generation Et2Zn/(S, S)-linked-BINOL 1 = 4/1 with MS 3A system was developed and was effective for various beta-substituted enones to afford products in good dr, yield (up to 99%), and high enantiomeric excess (up to 99% ee). With the Et2Zn/1 = 4/1 systems, catalyst loading for beta-unsubstituted enone was reduced to as little as 0.01 mol % (substrate/chiral ligand = 10 000). The new system was also effective for 1,4-addition reactions of 2-hydroxy-2'-methoxypropiophenone (9) to afford chiral tert-alcohol in high enantiomeric excess (up to 96% ee). Mechanistic investigations as well as transformations of the Michael adducts into synthetically versatile intermediates are also described.
引用
收藏
页码:2582 / 2590
页数:9
相关论文
共 94 条