Bioevents and redox conditions around the Cenomanian-Turonian anoxic event in Central Mexico

被引:31
|
作者
Nunez-Useche, Fernando [1 ,2 ]
Canet, Caries [2 ]
Barragan, Ricardo [3 ]
Alfonso, Pura [4 ]
机构
[1] Univ Nacl Autonoma Mexico, Posgrad Ciencias Tierra, Mexico City 04510, DF, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Geofis, Mexico City 04510, DF, Mexico
[3] Univ Nacl Autonoma Mexico, Inst Geol, Mexico City 04510, DF, Mexico
[4] Univ Politecn Cataluna, Dept Engn Minera & Recursos Nat, Ave Bases Manresa 61-73, Manresa 08242, Spain
关键词
Cenomanian-Turonian; Organic-rich sediments; Anoxic/dysoxic bottom waters; Pyrite framboids; Bacterial sulfate reduction; Central Mexico; WESTERN INTERIOR BASIN; BOUNDARY INTERVAL; HIGH-RESOLUTION; ORGANIC-CARBON; VOLCANIC ASH; ISOTOPE FRACTIONATION; RYBIE SECTION; DEMERARA RISE; BIO-EVENTS; SEA-LEVEL;
D O I
10.1016/j.palaeo.2016.01.035
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
The Xilitla section of central Mexico (western margin of the proto-North Atlantic) is characterized by pelagic sediments enriched in marine organic matter. Using biostratigraphic and radiometric data, it was dated at the latest Cenomanian-earliest Turonian transition. We identified an interval coeval with the faunal turnover associated with the Oceanic Anoxic Event 2 ( OAE 2), recording the Heterohelix shift and the "filament event" for the first time in Mexico. An integral analysis of sedimentary facies, pyrite and geochemical proxies reveals vertically variable redox conditions, with prevailing anoxic to dysoxic bottom waters. Along with phosphorous and manganese depletion, the highest content of total organic carbon and of certain redox-sensitive trace elements (RSTEs) is found during part of the anoxic event, confirming more uniform and constant oxygen-depleted conditions. This interval is also characterized by a significant enrichment in biogenic barium and elevated TOC/N-ToT ratios, suggesting a link between productivity and anoxia. Sulfur isotope fractionation has a maximum value within the anoxic event, favored by the increase in the flux of organic matter and intensified through sulfur recycling. Highly bioturbated beds representing short-lived episodes of oxic conditions are intermittent within the OAE 2 and become more frequent in the early Turonian. This study proposes a model similar to that of modern upwelling regions. High marine productivity controlled organic matter burial and oxygenation at the seafloor, varying between anoxic (laminated facies with small pyrite framboids) and dysoxic conditions (bedding-parallel bioturbated facies with inoceramid bivalves and large pyrite framboids), interrupted by short-term well-oxygenated episodes (thoroughly bioturbated fades with common benthic foraminifera). General low-oxygen conditions led to the formation of glauconite and pyrite (bacterially mediated); the enrichment of redox-sensitive trace elements in sediments (Cd, Zn, V and Cr scavenged by organic matter and Ni, Mo, Pb, Co and Re by pyrite) and resulted in Mn and P depletion. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:205 / 226
页数:22
相关论文
共 50 条
  • [21] Paleoceanographic changes at the northern Tethyan margin during the Cenomanian-Turonian Oceanic Anoxic Event (OAE-2)
    Gebhardt, Holger
    Friedrich, Oliver
    Schenk, Bettina
    Fox, Lyndsey
    Hart, Malcolm
    Wagreich, Michael
    MARINE MICROPALEONTOLOGY, 2010, 77 (1-2) : 25 - 45
  • [22] Age and synchronicity of planktonic foraminiferal bioevents across the Cenomanian-Turonian boundary interval (Late Cretaceous)
    Falzoni, Francesca
    Petrizzo, Maria Rose
    Caron, Michele
    Leckie, R. Mark
    Elderbak, Khalifa
    NEWSLETTERS ON STRATIGRAPHY, 2018, 51 (03) : 343 - 380
  • [23] Impact of the Anoxic Oceanic Event II on the evolution of ostracods in the Cenomanian-Turonian deposits of the Tinrhert Basin (SE Algeria)
    Tchenar, Soumia
    Ferre, Bruno
    Adaci, Mohammed
    Zaoui, Djamila
    Benyoucef, Madani
    Bensalah, Mustapha
    Kentri, Touria
    CARNETS DE GEOLOGIE, 2020, 20 (08): : 145 - 164
  • [24] The Cenomanian-Turonian oceanic anoxic event (OAE-2) and continuous drowning up to the Santonian of the Western Valles-San Luis Potosi Platform, Central to Eastern Mexico: Biostratigraphy, chemostratigraphy and paleoenvironments
    Omana, Lourdes
    Lopez Doncel, Ruben
    Torres Hernandez, Jose Ramon
    Nunez Useche, Fernando
    Cienfuegos, Edith
    MICROPALEONTOLOGY, 2022, 68 (01) : 29 - 50
  • [25] The Cenomanian-Turonian Boundary Event (CTBE) as recorded in the northern margin of Africa: palaeoceanography of the Oceanic Anoxic Event (OAE-2), North-Central Tunisia
    Soua, Mohamed
    El Asmi, Amina Mabrouk
    Zaghbib-Turki, Dalila
    INTERNATIONAL GEOLOGY REVIEW, 2023, 65 (06) : 920 - 942
  • [26] THE CENOMANIAN TURONIAN ANOXIC EVENT IN EUROPE - AN ORGANIC GEOCHEMICAL STUDY
    FARRIMOND, P
    EGLINTON, G
    BRASSELL, SC
    JENKYNS, HC
    MARINE AND PETROLEUM GEOLOGY, 1990, 7 (01) : 75 - 89
  • [27] Foraminiferal biostratigraphy and bioevents of the Cenomanian-Turonian succession in southern Sinai, Egypt and relationship to OAE2
    El Baz, Sherif M.
    Khalil, Mohamed M.
    JOURNAL OF AFRICAN EARTH SCIENCES, 2019, 150 : 310 - 318
  • [28] A climatic control on reorganization of ocean circulation during the mid-Cenomanian event and Cenomanian-Turonian oceanic anoxic event (OAE 2): Nd isotope evidence
    Zheng, Xin-Yuan
    Jenkyns, Hugh C.
    Gale, Andrew S.
    Ward, David J.
    Henderson, Gideon M.
    GEOLOGY, 2016, 44 (02) : 151 - 154
  • [29] Spatio-temporal variability in microfossil and geochemical records of Cenomanian-Turonian oceanic anoxic event-2: a review
    Sooraj, C. P.
    Gupta, Shweta
    Punekar, Jahnavi
    JOURNAL OF PALAEOGEOGRAPHY-ENGLISH, 2024, 13 (04): : 646 - 674
  • [30] First record of the Cenomanian-Turonian Oceanic Anoxic Event (OAE-2) in the eastern Rub' Al Khali Basin by means of elemental chemostratigraphy
    Soua, Mohamed
    Scheibe, Christian
    Craigie, Neil
    ACTA GEOCHIMICA, 2024, : 461 - 477